Lecture 5a
 Linear Algebra Review

T. Gambill

Department of Computer Science University of Illinois at Urbana-Champaign

February 2, 2010

Vector Space Example

The set of n-tuples in \mathbb{R}^{n} form a vector space.

$$
v=\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]
$$

By convention we will write vectors in column form. The transpose operator T converts column vectors to row vectors and vice versa.

$$
\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{n}
\end{array}\right]^{T}=\left[\begin{array}{llll}
v_{1} & v_{2} & \ldots & v_{n}
\end{array}\right]
$$

Vector Space Example 2

The set of continuous functions defined on a closed interval e.g. $f \in C([a, b]), f:[a, b] \rightarrow \mathbb{R}$ form a vector space over the reals \mathbb{R}.

$$
\begin{aligned}
& \text { If } f_{1}, f_{2} \in C([a, b]) \text { then } f_{1}+f_{2} \in C([a, b]) \\
& \text { If } r \in \mathbb{R} \text { then } r * f_{1} \in C([a, b])
\end{aligned}
$$

Vector Operations

- Addition and Subtraction
- Multiplication by a scalar
- Transpose
- Linear Combinations of Vectors
- Inner Product
- Outer Product
- Vector Norms

Vector Addition and Subtraction

Addition and subtraction are element-by-element operations

$$
\begin{aligned}
& c=a+b \quad \Longleftrightarrow \quad c_{i}=a_{i}+b_{i} \quad i=1, \ldots, n \\
& d=a-b \quad \Longleftrightarrow \quad d_{i}=a_{i}-b_{i} \quad i=1, \ldots, n
\end{aligned}
$$

$$
\begin{gathered}
a=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right] \quad b=\left[\begin{array}{l}
3 \\
2 \\
1
\end{array}\right] \\
a+b=\left[\begin{array}{l}
4 \\
4 \\
4
\end{array}\right] \quad a-b=\left[\begin{array}{r}
-2 \\
0 \\
2
\end{array}\right]
\end{gathered}
$$

Multiplication by a Scalar

Multiplication by a scalar involves multiplying each element in the vector by the scalar:

$$
\begin{gathered}
b=\sigma a \Longleftrightarrow \quad b_{i}=\sigma a_{i} \quad i=1, \ldots, n \\
a=\left[\begin{array}{l}
4 \\
6 \\
8
\end{array}\right] \quad b=\frac{a}{2}=\left[\begin{array}{l}
2 \\
3 \\
4
\end{array}\right]
\end{gathered}
$$

Vector Transpose

The transpose of a row vector is a column vector:

$$
u=[1,2,3] \quad \text { then } \quad u^{T}=\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]
$$

Likewise if v is the column vector

$$
v=\left[\begin{array}{l}
4 \\
5 \\
6
\end{array}\right] \quad \text { then } \quad v^{T}=[4,5,6]
$$

Linear Combinations

Combine scalar multiplication with addition

$$
\begin{gathered}
\alpha\left[\begin{array}{c}
u_{1} \\
u_{2} \\
\vdots \\
u_{m}
\end{array}\right]+\beta\left[\begin{array}{c}
v_{1} \\
v_{2} \\
\vdots \\
v_{m}
\end{array}\right]=\left[\begin{array}{c}
\alpha u_{1}+\beta v_{1} \\
\alpha u_{2}+\beta v_{2} \\
\vdots \\
\alpha u_{m}+\beta v_{m}
\end{array}\right]=\left[\begin{array}{c}
w_{1} \\
w_{2} \\
\vdots \\
w_{m}
\end{array}\right] \\
r=\left[\begin{array}{r}
-2 \\
1 \\
3
\end{array}\right] \quad s=\left[\begin{array}{l}
1 \\
0 \\
3
\end{array}\right] \\
t=2 r+3 s=\left[\begin{array}{r}
-4 \\
2 \\
6
\end{array}\right]+\left[\begin{array}{l}
3 \\
0 \\
9
\end{array}\right]=\left[\begin{array}{r}
-1 \\
2 \\
15
\end{array}\right]
\end{gathered}
$$

Linear Combinations

Any one vector can be created from an infinite combination of other "suitable" vectors.

$$
\begin{aligned}
& w=\left[\begin{array}{l}
4 \\
2
\end{array}\right]=4\left[\begin{array}{l}
1 \\
0
\end{array}\right]+2\left[\begin{array}{l}
0 \\
1
\end{array}\right] \\
& w=6\left[\begin{array}{l}
1 \\
0
\end{array}\right]-2\left[\begin{array}{l}
1 \\
-1
\end{array}\right] \\
& w=\left[\begin{array}{l}
2 \\
4
\end{array}\right]-2\left[\begin{array}{r}
-1 \\
1
\end{array}\right] \\
& w=2\left[\begin{array}{l}
4 \\
2
\end{array}\right]-4\left[\begin{array}{l}
1 \\
0
\end{array}\right]-2\left[\begin{array}{l}
0 \\
1
\end{array}\right]
\end{aligned}
$$

Linear Combinations

Graphical interpretation:

- Vector tails can be moved to convenient locations
- Magnitude and direction of vectors is preserved

Vector Inner Product

In physics, analytical geometry, and engineering, the dot product has a geometric interpretation

$$
\begin{gathered}
\sigma=x \cdot y \Longleftrightarrow \sigma=\sum_{i=1}^{n} x_{i} y_{i} \\
x \cdot y=\|x\|_{2}\|y\|_{2} \cos \theta
\end{gathered}
$$

Vector Inner Product

The inner product of x and y requires that x be a row vector y be a column vector

$$
\left[\begin{array}{llll}
x_{1} & x_{2} & x_{3} & x_{4}
\end{array}\right]\left[\begin{array}{l}
y_{1} \\
y_{2} \\
y_{3} \\
y_{4}
\end{array}\right]=x_{1} y_{1}+x_{2} y_{2}+x_{3} y_{3}+x_{4} y_{4}
$$

Vector Inner Product

For two n-element column vectors, u and v, the inner product is

$$
\sigma=u^{T} v \quad \Longleftrightarrow \quad \sigma=\sum_{i=1}^{n} u_{i} v_{i}
$$

The inner product is commutative so that (for two column vectors)

$$
u^{T} v=v^{T} u
$$

Computing the Inner Product in Python

The * operator performs the inner product if two vectors are compatible.

```
>>> import numpy as np
>>> u = np.arange(0,4,1,(float)).reshape(4,1) # u and v are column vectors
>>> v = np.arange(3,-1,-1,(float)).reshape(4,1)
>>> print(u*v)
[[ 0.]
    [ 2.]
    [ 2.]
    [ 0.]]
>>> print(u.reshape(1,4) * v)
[[ 0. 3. 6. 9.]
    [ 0. 2. 4. 6.]
    [ 0. 1. 2. 3.]
    [ 0. 0. 0. 0.]]
>>> print(np.dot(u.reshape(1,4), v))
[[ 4.]]
```


Vector Outer Product

The inner product results in a scalar.
The outer product creates a rankone matrix:

$$
A=u v^{T} \quad \Longleftrightarrow \quad a_{i, j}=u_{i} v_{j}
$$

Example

Outer product of two 4-element column vectors

$$
\begin{aligned}
u v^{T} & =\left[\begin{array}{l}
u_{1} \\
u_{2} \\
u_{3} \\
u_{4}
\end{array}\right]\left[\begin{array}{llll}
v_{1} & v_{2} & v_{3} & v_{4}
\end{array}\right] \\
& =\left[\begin{array}{llll}
u_{1} v_{1} & u_{1} v_{2} & u_{1} v_{3} & u_{1} v_{4} \\
u_{2} v_{1} & u_{2} v_{2} & u_{2} v_{3} & u_{2} v_{4} \\
u_{3} v_{1} & u_{3} v_{2} & u_{3} v_{3} & u_{3} v_{4} \\
u_{4} v_{1} & u_{4} v_{2} & u_{4} v_{3} & u_{4} v_{4}
\end{array}\right]
\end{aligned}
$$

Computing the Outer Product in Matlab

The * operator performs the outer product if two vectors are compatible.
>>> u = np.arange(0,4,1,(float)).reshape(4,1) \# u is a column vector >>> v = np.arange(3,-1,-1,(float)).reshape(1,4) \# v is a row vector >>> print(u * v)
[[0. 0. 0. 0.]
[3. 2. 1. 0.]
[6. 4. 2. 0.]
[9. 6. 3. 0.]]
>>>

Vector Norms

Compare magnitude of scalars with the absolute value

$$
|\alpha|>|\beta|
$$

Compare magnitude of vectors with norms

$$
\|x\|>\|y\|
$$

There are several ways to compute $\|x\|$. In other words the size of two vectors can be compared with different norms.

Vector Norms

Consider two element vectors, which lie in a plane

Use geometric lengths to represent the magnitudes of the vectors

$$
\ell_{a}=\sqrt{4^{2}+2^{2}}=\sqrt{20}, \quad \ell_{b}=\sqrt{2^{2}+4^{2}}=\sqrt{20}, \quad \ell_{c}=\sqrt{2^{2}+1^{2}}=\sqrt{5}
$$

We conclude that

$$
\ell_{a}=\ell_{b} \quad \text { and } \quad \ell_{a}>\ell_{c}
$$

or

$$
\|a\|=\|b\| \quad \text { and } \quad\|a\|>\|c\|
$$

The L_{2} Norm

The notion of a geometric length for 2D or 3D vectors can be extended vectors with arbitrary numbers of elements. The result is called the Euclidian or L_{2} norm:

$$
\|x\|_{2}=\left(x_{1}^{2}+x_{2}^{2}+\ldots+x_{n}^{2}\right)^{1 / 2}=\left(\sum_{i=1}^{n} x_{i}^{2}\right)^{1 / 2}
$$

The L_{2} norm can also be expressed in terms of the inner product

$$
\|x\|_{2}=\sqrt{x \cdot x}=\sqrt{x^{T} x}
$$

p-Norms

For any positive integer p

$$
\|x\|_{p}=\left(\left|x_{1}\right|^{p}+\left|x_{2}\right|^{p}+\ldots+\left|x_{n}\right|^{p}\right)^{1 / p}
$$

The L_{1} norm is sum of absolute values

$$
\|x\|_{1}=\left|x_{1}\right|+\left|x_{2}\right|+\ldots+\left|x_{n}\right|=\sum_{i=1}^{n}\left|x_{i}\right|
$$

The L_{∞} norm or max norm is

$$
\|x\|_{\infty}=\max \left(\left|x_{1}\right|,\left|x_{2}\right|, \ldots,\left|x_{n}\right|\right)=\max _{i}\left(\left|x_{i}\right|\right)
$$

Although p can be any positive number, $p=1,2, \infty$ are most commonly used.

Application of Norms

Are two vectors (nearly) equal?

Floating point comparison of two scalars with absolute value:

$$
\frac{|\alpha-\beta|}{|\alpha|}<\delta
$$

where δ is a small tolerance.
Comparison of two vectors with norms:

$$
\frac{\|y-z\|}{\|z\|}<\delta
$$

Application of Norms

Notice that

$$
\frac{\|y-z\|}{\|z\|}<\delta
$$

is not equivalent to

$$
\frac{\|y\|-\|z\|}{\|z\|}<\delta .
$$

This comparison is important in convergence tests for sequences of vectors.

Application of Norms

Creating a Unit Vector

Given $u=\left[u_{1}, u_{2}, \ldots, u_{m}\right]^{T}$, the unit vector in the direction of u is

$$
\hat{u}=\frac{u}{\|u\|_{2}}
$$

Proof:

$$
\|\hat{u}\|_{2}=\left\|\frac{u}{\|u\|_{2}}\right\|_{2}=\frac{1}{\|u\|_{2}}\|u\|_{2}=1
$$

The following are not unit vectors

$$
\frac{u}{\|u\|_{1}} \quad \frac{u}{\|u\|_{\infty}}
$$

Orthogonal Vectors

From geometric interpretation of the inner product

$$
\begin{gathered}
u \cdot v=\|u\|_{2}\|v\|_{2} \cos \theta \\
\cos \theta=\frac{u \cdot v}{\|u\|_{2}\|v\|_{2}}=\frac{u^{T} v}{\|u\|_{2}\|v\|_{2}}
\end{gathered}
$$

Two vectors are orthogonal when $\theta=\pi / 2$ or $u \cdot v=0$. In other words

$$
u^{T} v=0
$$

if and only if u and v are orthogonal.

Orthonormal Vectors

Orthonormal vectors are unit vectors that are orthogonal. A unit vector has an L_{2} norm of one.
The unit vector in the direction of u is

$$
\hat{u}=\frac{u}{\|u\|_{2}}
$$

Since

$$
\|u\|_{2}=\sqrt{u \cdot u}
$$

it follows that $u \cdot u=1$ if u is a unit vector.

Matrices

- Columns and Rows of a Matrix are Vectors
- Addition and Subtraction
- Multiplication by a scalar
- Transpose
- Linear Combinations of Vectors
- Matrix-Vector Product
- Matrix-Matrix Product

Notation

The matrix A with m rows and n columns looks like:

$$
A=\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & & a_{2 n} \\
\vdots & & & \vdots \\
a_{m 1} & & \cdots & a_{m n}
\end{array}\right]
$$

$$
a_{i j}=\text { element in row } i \text {, and column } j
$$

In Python we can define a matrix with
1 >> A = numpy. $\operatorname{array}([$ [...] , [...] , [...]])
where commas separate lists of row elements.
The $a_{2,3}$ element of the Python array A is A[1,2].

Matrices Consist of Row and Column Vectors

As a collection of column vectors

As a collection of row vectors

A prime is used to designate a row vector on this and the following pages.

Preview of the Row and Column View

Matrix and
vector operations

Row and column operations

Element-by-element operations

Matrix Operations

- Addition and subtraction
- Multiplication by a Scalar
- Matrix Transpose
- Matrix-Vector Multiplication
- Vector-Matrix Multiplication
- Matrix-Matrix Multiplication

Matrix Operations

Addition and subtraction

$$
C=A+B
$$

or

$$
c_{i, j}=a_{i, j}+b_{i, j} \quad i=1, \ldots, m ; j=1, \ldots, n
$$

Multiplication by a Scalar

$$
B=\sigma A
$$

or

$$
b_{i, j}=\sigma a_{i, j} \quad i=1, \ldots, m ; j=1, \ldots, n
$$

Note

Commas in subscripts are necessary when the subscripts are assigned numerical values. For example, $a_{2,3}$ is the row 2 , column 3 element of matrix A, whereas a_{23} is the 23 rd element of vector a. When variables appear in indices, such as $a_{i j}$ or $a_{i, j}$, the comma is optional

Matrix Transpose

$$
B=A^{T}
$$

or

$$
b_{i, j}=a_{j, i} \quad i=1, \ldots, m ; j=1, \ldots, n
$$

Matrix Transpose

In Python

1 >>> import numpy
$2 \ggg \mathrm{~A}=$ numpy. $\operatorname{array}([[0 ., 0 ., 0],.[0 ., 0 ., 0],.[1 ., 2 ., 3$.$] ,$ [0., 0., 0.]])

```
3 >>> A
```

4 array $\left(\left[\begin{array}{lll}{[0 .,} & 0 ., & 0 .]\end{array}\right.\right.$,
$[0 ., 0 ., 0$.$] ,$
[1., 2., 3.],
[0., 0., 0.]])
$9 \ggg B=$ A.transpose ()
$10 \ggg B$
$11 \ggg B$
12 array $\left(\left[\begin{array}{lll}{[0 .,} & 0 ., & 1 ., \\ 0 .\end{array}\right]\right.$,
$\left[\begin{array}{lll}0 ., & 0 ., & 2 ., \\ 0 .\end{array}\right]$,
$[0 ., 0 ., 3 ., 0$.$]])$

Matrix-Vector Product

- The Column View
- gives mathematical insight
- The Row View
- easy to do by hand
- The Vector View
- A square matrix rotates and stretches a vector

Column View of Matrix-Vector Product

Consider a linear combination of a set of column vectors $\left\{a_{(1)}, a_{(2)}, \ldots, a_{(n)}\right\}$. Each $a_{(j)}$ has m elements
Let x_{i} be a set (a vector) of scalar multipliers

$$
x_{1} a_{(1)}+x_{2} a_{(2)}+\ldots+x_{n} a_{(n)}=b
$$

or

$$
\sum_{j=1}^{n} a_{(j)} x_{j}=b
$$

Expand the (hidden) row index

$$
x_{1}\left[\begin{array}{c}
a_{11} \\
a_{21} \\
\vdots \\
a_{m 1}
\end{array}\right]+x_{2}\left[\begin{array}{c}
a_{12} \\
a_{22} \\
\vdots \\
a_{m 2}
\end{array}\right]+\cdots+x_{n}\left[\begin{array}{c}
a_{1 n} \\
a_{2 n} \\
\vdots \\
a_{m n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Column View of Matrix-Vector Product

Form a matrix with the $a_{(j)}$ as columns

$$
\left[\begin{array}{l|l|l|l}
& & & \\
a_{(1)} & a_{(2)} & \cdots & \left.\left.a_{(n)}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{l}
\\
b
\end{array}\right] .\right] .
\end{array}\right.
$$

Or, writing out the elements

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Column View of Matrix-Vector Product

Thus, the matrix-vector product is

$$
\left[\begin{array}{cccc}
a_{11} & a_{12} & \cdots & a_{1 n} \\
a_{21} & a_{22} & \cdots & a_{2 n} \\
\vdots & \vdots & & \vdots \\
a_{m 1} & a_{m 2} & \cdots & a_{m n}
\end{array}\right]\left[\begin{array}{c}
x_{1} \\
x_{2} \\
\vdots \\
x_{n}
\end{array}\right]=\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{m}
\end{array}\right]
$$

Save space with matrix notation

$$
A x=b
$$

Column View of Matrix-Vector Product

The matrix-vector product $b=A x$ produces a vector b from a linear combination of the columns in A.

$$
b=A x \quad \Longleftrightarrow \quad b_{i}=\sum_{j=1}^{n} a_{i j} x_{j}
$$

where x and b are column vectors

Column View of Matrix-Vector Product

Listing 1: Matrix-Vector Multiplication by Columns

```
initialize: b= zeros(m,1)
for j=1,\ldots,n
    for i=1,\ldots,m
        b(i)=A(i,j)x(j)+b(i)
        end
end
```


Compatibility Requirement

Inner dimensions must agree

$$
\begin{array}{cccc}
A & x & = & b \\
{[m \times n]}
\end{array} \begin{array}{cc}
{[n \times 1]} & = \\
{[m \times 1]}
\end{array}
$$

Row View of Matrix-Vector Product

Consider the following matrix-vector product written out as a linear combination of matrix columns

$$
\begin{aligned}
& {\left[\begin{array}{rrrr}
5 & 0 & 0 & -1 \\
-3 & 4 & -7 & 1 \\
1 & 2 & 3 & 6
\end{array}\right]\left[\begin{array}{r}
4 \\
2 \\
-3 \\
-1
\end{array}\right] } \\
= & 4\left[\begin{array}{r}
5 \\
-3 \\
1
\end{array}\right]+2\left[\begin{array}{l}
0 \\
4 \\
2
\end{array}\right]-3\left[\begin{array}{r}
0 \\
-7 \\
3
\end{array}\right]-1\left[\begin{array}{r}
-1 \\
1 \\
6
\end{array}\right]
\end{aligned}
$$

This is the column view.

Row View of Matrix-Vector Product

Now, group the multiplication and addition operations by row:

$$
\begin{aligned}
& 4\left[\begin{array}{r}
5 \\
-3 \\
1
\end{array}\right]+2\left[\begin{array}{l}
0 \\
4 \\
2
\end{array}\right]-3\left[\begin{array}{r}
0 \\
-7 \\
3
\end{array}\right]-1\left[\begin{array}{r}
-1 \\
1 \\
6
\end{array}\right] \\
&=\left[\begin{array}{rrrr}
(5)(4)+(0)(2) & + & (0)(-3) & + \\
(-3)(4)+(4)(-1) \\
(1)(4) & + & (2)(2) & + \\
(-7)(-3) & + & (1)(-1) \\
(3)(-3) & + & (6)(-1)
\end{array}\right]=\left[\begin{array}{r}
21 \\
16 \\
-7
\end{array}\right]
\end{aligned}
$$

Final result is identical to that obtained with the column view.

Row View of Matrix-Vector Product

Product of a 3×4 matrix, A, with a 4×1 vector, x, looks like
$\left[\begin{array}{c}a_{(1)}^{\prime} \\ \hline a_{(2)}^{\prime}\end{array}\right]\left[\begin{array}{l}x_{1} \\ x_{2} \\ x_{3} \\ x_{4}\end{array}\right]=\left[\begin{array}{l}a_{(1)}^{\prime} \cdot x \\ a_{(2)}^{\prime} \cdot x \\ a_{(3)}^{\prime} \cdot x\end{array}\right]=\left[\begin{array}{l}b_{1} \\ b_{2} \\ b_{3}\end{array}\right]$
where $a_{(1)}^{\prime}, a_{(2)}^{\prime}$, and $a_{(3)}^{\prime}$, are the row vectors constituting the A matrix.

The matrix-vector product $b=A x$ produces elements in b by forming inner products of the rows of A with x.

Row View of Matrix-Vector Product

Vector View of Matrix-Vector Product

If A is square, the product $A x$ has the effect of stretching and rotating x. Pure stretching of the column vector

$$
\left[\begin{array}{lll}
2 & 0 & 0 \\
0 & 2 & 0 \\
0 & 0 & 2
\end{array}\right]\left[\begin{array}{l}
1 \\
2 \\
3
\end{array}\right]=\left[\begin{array}{l}
2 \\
4 \\
6
\end{array}\right]
$$

Pure rotation of the column vector

$$
\left[\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 1
\end{array}\right]\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right]=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right]
$$

Vector-Matrix Product

Matrix-vector product

Vector-Matrix product

Vector-Matrix Product

Compatibility Requirement: Inner dimensions must agree

$$
\begin{array}{cccc}
u & A & = & v \\
{[1 \times m]}
\end{array} \begin{array}{cc}
{[m \times n]} & = \\
{[1 \times n]}
\end{array}
$$

Matrix-Matrix Product

Computations can be organized in six different ways We'll focus on just two

- Column View - extension of column view of matrix-vector product
- Row View - inner product algorithm, extension of column view of matrix-vector product

Column View of Matrix-Matrix Product

The product $A B$ produces a matrix C. The columns of C are linear combinations of the columns of A.

$$
A B=C \quad \Longleftrightarrow \quad c_{(j)}=A b_{(j)}
$$

$c_{(j)}$ and $b_{(j)}$ are column vectors.

The column view of the matrix-matrix product $A B=C$ is helpful because it shows the relationship between the columns of A and the columns of C.

Inner Product (Row) View of Matrix-Matrix Product

The product $A B$ produces a matrix C. The $c_{i j}$ element is the inner product of row i of A and column j of B.

$$
A B=C \quad \Longleftrightarrow \quad c_{i j}=a_{(i)}^{\prime} b_{(j)}
$$

$a_{(i)}^{\prime}$ is a row vector, $b_{(j)}$ is a column vector.

The inner product view of the matrix-matrix product is easier to use for hand calculations.

Matrix-Matrix Product Summary

The Matrix-vector product looks like:

$$
\left[\begin{array}{lll}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet
\end{array}\right]\left[\begin{array}{l}
\bullet \\
\bullet \\
\bullet
\end{array}\right]=\left[\begin{array}{l}
\bullet \\
\bullet \\
\bullet \\
\bullet
\end{array}\right]
$$

The vector-Matrix product looks like:

$$
\left[\begin{array}{llll}
\bullet & \bullet & \bullet & \bullet
\end{array}\right]\left[\begin{array}{lll}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet
\end{array}\right]=\left[\begin{array}{lll}
\bullet & \bullet & \bullet
\end{array}\right]
$$

Matrix-Matrix Product Summary

The Matrix-Matrix product looks like:

$$
\left[\begin{array}{lll}
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet
\end{array}\right]\left[\begin{array}{llll}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet
\end{array}\right]=\left[\begin{array}{llll}
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet \\
\bullet & \bullet & \bullet & \bullet
\end{array}\right]
$$

Matrix-Matrix Product Summary

Compatibility Requirement

$$
\begin{array}{cccc}
A & B & = & C \\
{[m \times r]}
\end{array} \begin{array}{cc}
{[r \times n]} & = \\
{[m \times n]}
\end{array}
$$

Inner dimensions must agree Also, in general

$$
A B \neq B A
$$

Mathematical Properties of Vectors and Matrices

- Linear Independence
- Vector Spaces
- Subspaces associated with matrices
- Matrix Rank

Linear Independence

Two vectors lying along the same line are not independent

$$
u=\left[\begin{array}{l}
1 \\
1 \\
1
\end{array}\right] \quad \text { and } \quad v=-2 u=\left[\begin{array}{l}
-2 \\
-2 \\
-2
\end{array}\right]
$$

Any two independent vectors, for example,

$$
v=\left[\begin{array}{l}
-2 \\
-2 \\
-2
\end{array}\right] \quad \text { and } \quad w=\left[\begin{array}{l}
0 \\
0 \\
1
\end{array}\right]
$$

define a plane. Any other vector in this plane of v and w can be represented by

$$
x=\alpha v+\beta w
$$

x is linearly dependent on v and w because it can be formed by a linear combination of v and w.

Linear Independence

A set of vectors is linearly independent if it is impossible to use a linear combination of vectors in the set to create another vector in the set. Linear independence is easy to see for vectors that are orthogonal, for example,

$$
\left[\begin{array}{l}
4 \\
0 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{r}
0 \\
-3 \\
0 \\
0
\end{array}\right], \quad\left[\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right]
$$

are linearly independent.

Linear Independence

Consider two linearly independent vectors, u and v. If a third vector, w, cannot be expressed as a linear combination of u and v, then the set $\{u, v, w\}$ is linearly independent.
In other words, if $\{u, v, w\}$ is linearly independent then

$$
\alpha u+\beta v=\delta w
$$

can be true only if $\alpha=\beta=\delta=0$.
More generally, if the only solution to

$$
\begin{equation*}
\alpha_{1} v_{(1)}+\alpha_{2} v_{(2)}+\cdots+\alpha_{n} v_{(n)}=0 \tag{1}
\end{equation*}
$$

is $\alpha_{1}=\alpha_{2}=\ldots=\alpha_{n}=0$, then the set $\left\{v_{(1)}, v_{(2)}, \ldots, v_{(n)}\right\}$ is linearly independent. Conversely, if equation (1) is satisfied by at least one nonzero α_{i}, then the set of vectors is linearly dependent.

Linear Independence

Let the set of vectors $\left\{v_{(1)}, v_{(2)}, \ldots, v_{(n)}\right\}$ be organized as the columns of a matrix. Then the condition of linear independence is

$$
\left[\begin{array}{l|l|l|l}
& & & \tag{2}\\
v_{(1)} & v_{(2)} & \cdots & v_{(n)} \\
& &
\end{array} \begin{array}{c}
\alpha_{1} \\
\alpha_{2} \\
\vdots \\
\alpha_{n}
\end{array}\right]=\left[\begin{array}{c}
0 \\
0 \\
\vdots \\
0
\end{array}\right]
$$

The columns of the $m \times n$ matrix, A, are linearly independent if and only if $x=(0,0, \ldots, 0)^{T}$ is the only n element column vector that satisfies $A x=0$.

Vector Spaces

- Spaces and Subspaces
- Basis of a Subspace
- Subspaces associated with Matrices

Spaces and Subspaces

Group vectors according to number of elements they have. Vectors from these different groups cannot be mixed.
$\mathbf{R}^{1}=$ Space of all vectors with one element.
These vectors define the points along a line.
$\mathbf{R}^{2}=$ Space of all vectors with two elements.
These vectors define the points in a plane.
$\mathbf{R}^{n}=$ Space of all vectors with n elements.
These vectors define the points in an
n-dimensional space (hyperplane).

Subspaces

The three vectors
$u=\left[\begin{array}{l}1 \\ 2 \\ 0\end{array}\right], \quad v=\left[\begin{array}{r}-2 \\ 1 \\ 3\end{array}\right], \quad w=\left[\begin{array}{r}3 \\ 1 \\ -3\end{array}\right]$,
lie in the same plane. The vectors have three elements each, so they belong to \mathbf{R}^{3}, but they span a subspace of \mathbf{R}^{3}.

Basis and Dimension of a Subspace

- A basis for a subspace is a set of linearly independent vectors that span the subspace.
- Since a basis set must be linearly independent, it also must have the smallest number of vectors necessary to span the space. (Each vector makes a unique contribution to spanning some other direction in the space.)
- The number of vectors in a basis set is equal to the dimension of the subspace that these vectors span.
- Mutually orthogonal vectors (an orthogonal set) form convenient basis sets, but basis sets need not be orthogonal.

Subspaces Associated with Matrices

The matrix-vector product

$$
y=A x
$$

creates y from a linear combination of the columns of A The column vectors of A form a basis for the column space or range of A.

Matrix Rank

- The rank of a matrix, A, is the number of linearly independent columns in A.
- $\operatorname{rank}(A)$ is the dimension of the column space of A.
- Numerical computation of $\operatorname{rank}(A)$ is tricky due to roundoff.

Consider

$$
u=\left[\begin{array}{l}
1 \\
0 \\
0
\end{array}\right] \quad v=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad w=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Do these vectors span \mathbf{R}^{3} ?

Matrix Rank

- The rank of a matrix, A, is the number of linearly independent columns in A.
- $\operatorname{rank}(A)$ is the dimension of the column space of A.
- Numerical computation of $\operatorname{rank}(A)$ is tricky due to roundoff.

Consider

$$
u=\left[\begin{array}{c}
1 \\
0 \\
0.00001
\end{array}\right] \quad v=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad w=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Do these vectors span \mathbf{R}^{3} ?

Matrix Rank

- The rank of a matrix, A, is the number of linearly independent columns in A.
- $\operatorname{rank}(A)$ is the dimension of the column space of A.
- Numerical computation of $\operatorname{rank}(A)$ is tricky due to roundoff.

Consider

$$
u=\left[\begin{array}{c}
1 \\
0 \\
\varepsilon_{m}
\end{array}\right] \quad v=\left[\begin{array}{l}
0 \\
1 \\
0
\end{array}\right] \quad w=\left[\begin{array}{l}
1 \\
1 \\
0
\end{array}\right]
$$

Do these vectors span \mathbf{R}^{3} ?

Matrix Rank (2)

We can use Numpy's built-in rank function for exploratory calculations on (relatively) small matrices
>>> import numpy as np
>>> A = np.array([[1.,0.,0.],[0.,1.,0.],[0.,0.,0.]])
>> A
array([[1., 0., 0.],
[0., 1., 0.],
[0., 0., 0.]])
>>> np. $\operatorname{rank}(\mathrm{A})$
2

Matrix Rank (2)

Repeat numerical calculation of rank with smaller diagonal entry

```
>>> import numpy as np
>>> A = np.eye(3)
3 >>> A
4 array ([[ 1., 0., 0.] ,
    [0., 1., 0.],
    [0., 0., 1.]])
>>> A[2,2] = np.finfo(float).eps
>>> A
```



```
    [ 0.00000000e+00, 1.00000000e+00, 0.00000000e+00],
    [ 0.OQQOQQQOe+QQ, 0.OQOQQQQQe+QQ, 2.22044605e-16]])
>>> np.rank(A)
2
```

Even though $\mathrm{A}(2,2)$ is not identically zero, it is small enough that the matrix is numerically rank-deficient

Special Matrices

- Diagonal Matrices
- Tridiagonal Matrices
- The Identity Matrix
- The Matrix Inverse
- Symmetric Matrices
- Positive Definite Matrices
- Orthogonal Matrices
- Permutation Matrices

Diagonal Matrices

Diagonal matrices have non-zero elements only on the main diagonal.

$$
C=\operatorname{diag}\left(c_{1}, c_{2}, \ldots, c_{n}\right)=\left[\begin{array}{cccc}
c_{1} & 0 & \cdots & 0 \\
0 & c_{2} & & 0 \\
\vdots & & \ddots & \vdots \\
0 & 0 & \cdots & c_{n}
\end{array}\right]
$$

The diagflat function is used to create a diagonal matrix from a vector.

```
1 >>> import numpy as np
2 >>> x = np.array([1.,-5.,2.,6.])
3 >>> A = np.diagflat(x)
4 >>> A
5 array ([[ 1., 0., 0., 0.] ],
    [0., -5., 0., 0.],
    [0., 0., 2., 0.],
    [0., 0., 0., 6.]])
```


Diagonal Matrices

The diagflat function can also be used to create a matrix with elements only on a specified super-diagonal or sub-diagonal. Doing so requires using the two-parameter form of diagflat:

```
1 ~ \ggg ~ n p . d i a g f l a t ( n p . a r r a y ( [ 1 . , 2 . , 3 . ] ) , k = 1 )
2 array([[ 0., 1., 0., 0.],
    [ 0., 0., 2., 0.],
    [ 0., 0., 0., 3.],
    [0., 0., 0., 0.]])
>>> np.diagflat(np.array([1.,2.,3.]),k=-1)
array([[ 0., 0., 0., 0.],
    [ 1., 0., 0., 0.],
    [0., 2., 0., 0.],
    [ 0., 0., 3., 0.]])
```


Identity Matrices

An identity matrix is a square matrix with ones on the main diagonal.

$$
I=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right]
$$

An identity matrix is special because

$$
A I=A \quad \text { and } \quad I A=A
$$

for any compatible matrix A. This is like multiplying by one in scalar arithmetic.

Identity Matrices

Identity matrices can be created with the built-in eye function.

```
>>> I = np.eye(4)
2 >>> I
3 array ([[ 1., 0., 0., 0.] ,
    [0., 1., 0., 0.],
    [0., 0., 1., 0.],
    [0., 0., 0., 1.]])
```

Sometimes I_{n} is used to designate an identity matrix with n rows and n columns. For example,

$$
I_{4}=\left[\begin{array}{llll}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]
$$

Identity Matrices

A non-square, identity-like matrix can be created with the two-parameter form of the eye function:

```
1 >>> J = np.eye( 3,5)
2 >>> J
з array([[ 1., 0., 0., 0., 0.],
    [ 0., 1., 0., 0., 0.],
    [0., 0., 1., 0., 0.]])
>>> K = np.eye(4,2)
>>> K
array([[ 1., 0.],
    [ 0., 1.],
    [0., 0.],
    [ 0., 0.]])
```

J and K are not identity matrices!

Functions to Create Special Matrices

Matrix	Matlab function
Diagonal	diag
Identity	eye
Inverse	inv

Symmetric Matrices

If $A=A^{T}$, then A is called a symmetric matrix.

$$
\left[\begin{array}{rrr}
5 & -2 & -1 \\
-2 & 6 & -1 \\
-1 & -1 & 3
\end{array}\right]
$$

Note

$B=A^{T} A$ is symmetric for any (real) matrix A.

Tridiagonal Matrices

$$
\left[\begin{array}{rrrr}
2 & -1 & 0 & 0 \\
-1 & 2 & -1 & 0 \\
0 & -1 & 2 & -1 \\
0 & 0 & -1 & 2
\end{array}\right] .
$$

The diagonal elements need not be equal. The general form of a tridiagonal matrix is

$$
A=\left[\begin{array}{ccccccc}
a_{1} & b_{1} & & & & & \\
c_{2} & a_{2} & b_{2} & & & & \\
& c_{3} & a_{3} & b_{3} & & & \\
& & \ddots & \ddots & \ddots & & \\
& & & & & & \\
& & & & c_{n-1} & a_{n-1} & b_{n-1} \\
& & & & & c_{n} & a_{n}
\end{array}\right]
$$

