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Goals:

@ recall linear algebra ouen

@ motivation: why do we need to solve a linear system of equations?
@ cost analysis of basic operations

@ identify basic solution schemes to systems
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Linear Algebra is a prerequisite of the course!
@ look at Lecture 5a notes
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Why this is important:

@ matrix problems arise in many areas of CS (information sciences,
graphics, design, etc)

@ Basic Linear Algebra Subprograms (BLAS) is an interface standard for
operations

@ simple systems set the stage for further development: avoiding error,
avoiding large costs

1

T. Gambill (UIUC) CS 357 February 14, 2012 4/39



Motivation: Newton’s Method in higher dimensions

Given an initial guess xo we compute the matrix J(xo) is called the Jacobian,

_ ¥filx)

ax]-

Jij
and we solve the following system of equations for xq,

x1=Xo —J " (x0) * £(xo)
Although, we will later see why we should (and can) avoid computing the
inverse of the Jacobian and instead solve the system of equations,
J(xo) * (x1 —xo) = —£(xo)
We check to see if x4 is a root and if not then we continue to iterate.
JOad) * (xaer1 — X)) = —f£(x)

We may save calculations of J(xi) by using the same value of J(x,) over

several iterations.
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Motivation: Graph Theory

@ Given a graph, we can construct an associated square matrix A, called
the Adjacency Matrix

@ If we denote A = [g;] then

)1 ifnodeiis connected to node
7710 otherwise

o oo~ O
OO R, OR
coroOo~O
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Motivation: Graph Theory

A path (walk) of length I from node i to node j in a graph is a sequence of [
edges of the graph that starts at node i and terminates at node ;.

Counting paths

Given an adjacency matrix A corresponding to a graph then the number of
different paths of length I > 0 from node i to node j equals the value b;; where
byl =B = A"

What is the cost of computing A'?
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Motivation: Graph Theory

@ Given a graph, we can construct an associated square matrix D, called
the Degree matrix

@ If we denote D = [d;;] then

o {k if i = j and node i has k edges incident(connected) to node i
l] -

0 otherwise
(2)
Vertex labeled graph Degree matrix

e 400000

o o 030000

‘ 002000

000300

e.e 000030

o' 000001
T
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Motivation: Graph Theory

@ Given a graph, construct associated square matrix £, called the graph
Laplacian

@ L =D — A where D is the Degree Matrix and A is the Adjacency Matrix
for the graph.

2 -1 0 0 -1 0
-1 3 -1 0 -1 O
o -1 2 -1 0 O
o 0 -1 3 -1 -1
-1 -1 0 -1 3 0
0O 0o 0 -1 o0 1
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Motivation: Graph Theory

Graph is Laplacian useful for
@ Calculating spanning trees
@ Partitioning a graph evenly
@ and many more....

To use the graph Laplacian, you need to solve Lx =D
for many different vectors, b.
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Motivation: Graph Theory (Multiple Right Hand Sides)

@ Solve Ax = b for many different b vectors
@ For k different b vectors, Gaussian Elimination costs O (kn?3)
@ We can do better: LU factorization

I
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Matrix Inverse

Let A be a square (i.e. n x n) with real elements. The inverse of A is
designated A—', and has the property that

ATA=1 and AA'=1]

The formal solution to Ax = b is x = A~ !b.

Ax=Db
A TAx=A"1b
Ix=A"'b
x=A"1b
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@ formal solutionto Ax=bisx=A"1b
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@ formal solutionto Ax=bisx=A"1b

@ BUT it is bad evaluate x this way

it
v
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@ formal solutionto Ax=bisx=A"1b

@ BUT it is bad evaluate x this way
@ why?

it
v
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Matrix Inverse

@ formal solutionto Ax =bisx=A"'b

@ BUT it is bad evaluate x this way

@ why?

@ we will not form A—!, but solve for x directly using Gaussian elimination.
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Why do we care as Numerical Analysts?

Open questions:
@ How expensive is it to solve Ax = b?
@ What problems (errors) will we encounter solving Ax = b?
@ Some matrices are easy/cheap to use: diagonal, tridiagonal, etc.

~ are there others? what makes something a "good” matrix numerically?
~ are there bad ones? how do we identify them numerically?

@ what do actual numerical analysts, engineers, developers, etc use?!?!
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Formal Solution when Aisn x n

The formal solutionto Ax =b is
x=A"b

where A is n x n.
If A—! exists then A is said to be nonsingular.
If A—! does not exist then A is said to be singular.
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Formal Solution when Aisn x n

If A—1 exists then
Ax=Db E x=A"b

but

Do not compute the solution to Ax =b by
finding A~', and then multiplying b by A—!

Wesee: x=A"1b

We do: Solve Ax = b by Gaussian elimination
or an equivalent algorithm
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Singularity of A

If an n x n matrix, A, is singular then
@ the columns of A are linearly dependent
@ the rows of A are linearly dependent
@ rank(A) <n
@ det(A) =0
@ A~! does not exist
@ a solution to Ax =b may not exist
@ If a solution to Ax = b exists, it is not unique
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Summary of Requirements for Solution of Ax = b

Given the n x n matrix A and the n x 1 vector, b

@ the solution to Ax = b exists and is unique for any b if and only if
rank(A) = n.

Recall: rank = # of linearly independent rows or columns

Recall: Range(A) = set of vectors y such that Ax =y for some x
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Solving a system

Ax=Db
Three situations:
@ Ais nonsingular: There exists a unique solution x = A~'b
©Q Ais singular and b € Range(A): There are infinite solutions.
© Ais singular and b ¢ Range(A): There are no solutions.

- 2 0 . (1] B 1/2
OA__O 4_b__ég_,thenx_[Z}
2 0], [1] o _ g
QA= 0 o b= o) then infinitely many solutions. x = { o }
2 0] 1] _
QA= 0 0 b= 1) then no solutions.
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Solving a system, Cramer’s Rule

The Determinant
Given a matrix A,., = (a;;) the determinant is defined as,

n

det(A) = Y (—1)"" xay; * det(A;)

i=0

where j(the column) is fixed and A;; represents the "reduced” matrix of A with
it's i row and j'h column removed.

The above definition is called the column sum expansion. There is also a row
sum expansion and other ways to compute the determinant. Note that the det
function maps nxn (square) matrices into IR the real numbers.
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Solving a system, Cramer’s Rule

The det function has the following properties:
@ det(AB) = det(A)det(B)
Q det(l) =1 where I is the nxn identity matrix
Q det(AT) = det(A)
@ det(A) = 0if and only if A is singular

@ |det(A)| =the volume of the parallelepiped(parallelogram for n = 2) formed
by the columns of A

Examples

can(} )

2 00
@det| |0 2 0] ] =
0 0 2

Use the Python numpy.linalg.det function to compute determinants. Better to
use the Python numpy.linalg.cond function to determine singular matrices.
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Solving a system, Cramer’s Rule

The solution of the system of equations Ax = b is given by,

Cramer’s Rule

- det(Alb)
Xk = W 3)

where Alb denotes the matrix A with the k column replaced by b.

« Gramer’s Rule is bad!!!
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What's the big deal? ....cost

Consider the time it takes to compute one of the determinants. Denote
A’ = (a;;) = Alcb for a fixed k and expand the determinant down the first
column,

det((aj)) = an (—1)" det(A] 1) + an (—1)* det(AS ) + ...+ am (—1)" " det (A}, )
(4)
so the cost is greater than n multiplications and n — 1 additions plus the cost of
performing the n determinants det(A;,) fori =1,...,n. We can write a formula
for a lower bound on the cost of computing the determmant of an nxn matrix
A’ as,
cost(det(A’)) = n x cost(det(A")) (5)

where A” is a matrix of size (n — 1)x(n — 1). Since for a matrix A of size 1x1
we have cost(det(A)) = 1 we can write, for a lower bound on the cost,

cost(det(A")) = n! (6E
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O(n!)
How large is n! ?

Sterling’s Formula

Al ey B (Z) (7)

@ humans: milliFLOPS

@ hand calculators: 10 FLOPS

@ desktops: a few GFLOPS (10° FLOPS)

@ Intel Core i7 980 XE 107.55 GFLOPS

@ ATl Radeon HD4800 1 TERAFLOP (10'?> FLOPS)
@ Tianhe-1 2.5 petaflops (10> FLOPS)

Example: n!, for n = 100

100! ~ 9.3 x 10*7 (8)

At 102 FLOPS = 1 TERAFLOPS it would take 9.3 = 10'%7 /10'? seconds
~ 3 x 1038 years where the age of the universe is ONLY ~ 1.4 x 10'° years!!!
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Remember Big-O ?

How to measure the impact of n on algorithmic cost?
o()
Let g(n) be a function of n. Then define
O(g(n)) ={f(n)|3c,n0 >0 : 0 < f(n) < cg(n), ¥n > no}

That is, f(n) € O(g(n)) if there is a constant c such that 0 < f(n) < cg(n) is
satisfied.

@ assume non-negative functions (otherwise add | - |) to the definitions

@ f(n) € O(g(n)) represents an asymptotic upper bound on f(n) up to a
constant

@ example: f(n) =3 /n +2logn + 8n + 85n* € O(n?)
T
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Moore...

Moore’s Law

The Fifth Paradigm Logarithmic Plot
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BLAS

Basic Linear Algebra Subprograms (BLAS) interface introduced APIs for
common linear algebra tasks

@ Level 1: vector operations (dot products, vector norms, etc) e.g.

y+ ax+y (9)
Y Xxy (10)
y x| (11)

@ Level 2: matrix-vector operations, e.g.

y < aAxx+Bxy
@ Level 3: matrix-matrix operations, e.g.

C+ axAxB+pC

@ optimized versions of the reference BLAS are used everyday: ATLAS, ettm
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@ inner product of u and v both [n x 1]

T

O=UV=1Uv +- -+ U,y
@ — n multiplies, n — 1 additions
@ — O(n) flops
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@ mat-vec of A ([n x n]) and u ([n x 1])

1
2
3
4
5

for i=1,...,n
for j=1,...,n
o(i) = a(i, j)u(j) + v(i)
end
end

e — n? multiplies, n? additions
@ — O(n?) flops
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vec-vec, mat-vec, mat-mat

@ mat-mat of A ([n x n]) and B ([n x n])

1 for j=1,...,n

2 for k=1,..., n

3 for i=1,..., n

. Clk,j) = Alk, )B(i, ) + C(k. )
5 end

6 end

7 end

e — n® multiplies, n* additions
@ — O(nd) flops

I
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Operation FLOPS

ulv On)
Au 0(n?)
AB o)
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Gaussian Elimination

@ Solving Diagonal Systems
@ Solving Triangular Systems
@ Gaussian Elimination Without Pivoting

» Hand Calculations
» Cartoon Version
> The Algorithm

@ Gaussian Elimination with Pivoting

» Row or Column Interchanges, or Both
> Implementation

@ Solving Systems with the Backslash Operator
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The system defined by Ax = b, where

1 00

-1
0 3 0 b= 6
0 0 5 —15

A:

it
v
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The system defined by Ax = b, where

1 00 -1
0 3 0 b= 6
0 0 5 —15

X1 = -1
33(72 6

—15

A:

is equivalent to

5.‘>C3
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Solving Diagonal Systems

The system defined by Ax = b, where

1 00 -1
A=10 3 0 b= 6
0 0 5 —15

is equivalent to

X1 = —1
3.X'2 = 6
5x3 = —15
The solution is
6 -15
X1:—1 x2:§:2 XS_T:_S
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3

Solving Diagonal Systems

Listing 1: Diagonal System Solution

given A, b
for i=1...n
x; = b;/a;;

end
In Python:
>>> A =
>>> b = ...
>>> X = b/numpy.diag(A)

# A is a diagonal matrix
# b is a row vector

This is the only place where element-by-element division (/) has anything to

do with solving linear systems of equations.
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Sketch out an operation count to solve a diagonal system of equations... I
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Sketch out an operation count to solve a diagonal system of equations... I
one division n times — O(n) FLOPS I
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Triangular Systems

The generic lower and upper triangular matrices are

0
0

lrm

Uin
Uop

unn

Ux=c

are easily solved by forward substitution and backward substitution,

111 0
121 122
an
and
Uir U
0 U
u=1 .
0
The triangular systems
Ly=>b
respectively
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The system defined by Ax = b, where

4 0 O

8
-2 3 0 b=1|-1
2 1 =2 9

A:

it
v
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Solving Triangular Systems
The system defined by Ax = b, where

4 0 0 8
A=|-2 3 0 b= | -1
2 1 =2 9
is equivalent to
4.')(1 = 8
—2x1 + 3x = -1
2x1  + Xy 4+ —2x3 = 9
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Solving Triangular Systems
The system defined by Ax = b, where

4 0 O 8
A=|-2 3 0 b= | -1
2 1 =2 9
is equivalent to
4.')(1 = 8
—2x1 + 3x = -1
2x1 + X + —2x3 = 9
Solve in forward order (first equation is solved first)
8 1 3
x1:Z:2 xzzé(_l'i_le):g:l

1 4
(9—X2—2X1):7:—2

B=5 )
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Solving Triangular Systems

Solving for x1, x3, ..., x, for a lower triangular system is called forward
substitution.

given L, b

x1 = b/l

for i=2...n
S:b,’
for j=1...i—1

s =5—;;x;

end
x; =s/l;;

end
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Solving Triangular Systems

Solving for x1, x3, ..., x, for a lower triangular system is called forward
substitution.

given L, b

x1 = b/l

for i=2...n
S:b,’
for j=1...i—1

s:s—/Zl-,,-xj

end
x; =s/l;;

end

Using forward or backward substitution is sometimes referred to as performing
a triangular solve.
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Sketch out an operation count to solve a triangular system of equations... I
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Operations?

Try...

Sketch out an operation count to solve a triangular system of equations...

cheap!
@ begin in the upper corner: 1 div
@ row 2: 1 mult, 1 add, 1 div, or 3 FLOPS
@ row 3: 2 mult, 2 add, 1 div, or 5 FLOPS
@ row 4: 3 mult, 3 add, 1 div, or 7 FLOPS
°:
@ row k: 2k — 1 FLOPS
Total FLOPS? Y }_, 2k — 1 =2 or O(n?) FLOPS
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