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Goals:

recall linear algebra ouch!

motivation: why do we need to solve a linear system of equations?
cost analysis of basic operations
identify basic solution schemes to systems
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Prereq
Linear Algebra is a prerequisite of the course!

look at Lecture 5a notes
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Why this is important:

matrix problems arise in many areas of CS (information sciences,
graphics, design, etc)
Basic Linear Algebra Subprograms (BLAS) is an interface standard for
operations
simple systems set the stage for further development: avoiding error,
avoiding large costs
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Motivation: Newton’s Method in higher dimensions
Given an initial guess x0 we compute the matrix J(x0) is called the Jacobian,

Jij =
∂fi(x0)

∂xj
.

and we solve the following system of equations for x1,

x1 = x0 − J−1(x0) ∗ f(x0)

Although, we will later see why we should (and can) avoid computing the
inverse of the Jacobian and instead solve the system of equations,

J(x0) ∗ (x1 − x0) = −f(x0)

We check to see if x1 is a root and if not then we continue to iterate.

J(xk) ∗ (xk+1 − xk) = −f(xk)

We may save calculations of J(xk) by using the same value of J(xk) over
several iterations.
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Motivation: Graph Theory

Given a graph, we can construct an associated square matrix A, called
the Adjacency Matrix
If we denote A = [aij] then

aij =

{
1 if node i is connected to node j
0 otherwise

(1)

⇒


0 1 0 0 1 0
1 0 1 0 1 0
0 1 0 1 0 0
0 0 1 0 1 1
1 1 0 1 0 0
0 0 0 1 0 0


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Motivation: Graph Theory

A path (walk) of length l from node i to node j in a graph is a sequence of l
edges of the graph that starts at node i and terminates at node j.

Counting paths
Given an adjacency matrix A corresponding to a graph then the number of
different paths of length l > 0 from node i to node j equals the value bij where
[bij] = B = Al.

What is the cost of computing Al?
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Motivation: Graph Theory

Given a graph, we can construct an associated square matrix D, called
the Degree matrix
If we denote D = [dij] then

dij =

{
k if i = j and node i has k edges incident(connected) to node i
0 otherwise

(2)
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Motivation: Graph Theory

Given a graph, construct associated square matrix L, called the graph
Laplacian
L = D − A where D is the Degree Matrix and A is the Adjacency Matrix
for the graph.

⇒


2 −1 0 0 −1 0

−1 3 −1 0 −1 0
0 −1 2 −1 0 0
0 0 −1 3 −1 −1

−1 −1 0 −1 3 0
0 0 0 −1 0 1


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Motivation: Graph Theory

Graph is Laplacian useful for
Calculating spanning trees
Partitioning a graph evenly
and many more....

To use the graph Laplacian, you need to solve Lx = b
for many different vectors, b.
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Motivation: Graph Theory (Multiple Right Hand Sides)

Solve Ax = b for many different b vectors
For k different b vectors, Gaussian Elimination costs O(kn3)

We can do better: LU factorization
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Matrix Inverse

Let A be a square (i.e. n× n) with real elements. The inverse of A is
designated A−1, and has the property that

A−1 A = I and A A−1 = I

The formal solution to Ax = b is x = A−1b.

Ax = b

A−1 Ax = A−1b

Ix = A−1b

x = A−1b
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Matrix Inverse

formal solution to Ax = b is x = A−1b

BUT it is bad evaluate x this way
why?
we will not form A−1, but solve for x directly using Gaussian elimination.
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Why do we care as Numerical Analysts?

Open questions:
How expensive is it to solve Ax = b?
What problems (errors) will we encounter solving Ax = b?
Some matrices are easy/cheap to use: diagonal, tridiagonal, etc.

I are there others? what makes something a ”good” matrix numerically?
I are there bad ones? how do we identify them numerically?

what do actual numerical analysts, engineers, developers, etc use?!?!
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Formal Solution when A is n× n

The formal solution to Ax = b is

x = A−1b

where A is n× n.
If A−1 exists then A is said to be nonsingular.
If A−1 does not exist then A is said to be singular.
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Formal Solution when A is n× n

If A−1 exists then
Ax = b =⇒ x = A−1b

but

Do not compute the solution to Ax = b by
finding A−1, and then multiplying b by A−1!

We see: x = A−1b

We do: Solve Ax = b by Gaussian elimination
or an equivalent algorithm
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Singularity of A

If an n× n matrix, A, is singular then
the columns of A are linearly dependent
the rows of A are linearly dependent
rank(A) < n
det(A) = 0
A−1 does not exist
a solution to Ax = b may not exist
If a solution to Ax = b exists, it is not unique
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Summary of Requirements for Solution of Ax = b

Given the n× n matrix A and the n× 1 vector, b
the solution to Ax = b exists and is unique for any b if and only if
rank(A) = n.

Recall: rank = # of linearly independent rows or columns

Recall: Range(A) = set of vectors y such that Ax = y for some x
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Solving a system

Ax = b

Three situations:
1 A is nonsingular: There exists a unique solution x = A−1b
2 A is singular and b ∈ Range(A): There are infinite solutions.
3 A is singular and b < Range(A): There are no solutions.

1 A =

[
2 0
0 4

]
b =

[
1
8

]
, then x =

[
1/2

2

]
.

2 A =

[
2 0
0 0

]
b =

[
1
0

]
, then infinitely many solutions. x =

[
1/2
α

]
.

3 A =

[
2 0
0 0

]
b =

[
1
1

]
, then no solutions.
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Solving a system, Cramer’s Rule

The Determinant
Given a matrix Anxn = (aij) the determinant is defined as,

det(A) =

n∑
i=0

(−1)i+j ∗ aij ∗ det(Ai,j)

where j(the column) is fixed and Ai,j represents the ”reduced” matrix of A with
it’s ith row and jth column removed.

The above definition is called the column sum expansion. There is also a row
sum expansion and other ways to compute the determinant. Note that the det
function maps nxn (square) matrices into R the real numbers.
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Solving a system, Cramer’s Rule
The det function has the following properties:

1 det(AB) = det(A)det(B)
2 det(I) = 1 where I is the nxn identity matrix
3 det(AT) = det(A)
4 det(A) = 0 if and only if A is singular
5 |det(A)| =the volume of the parallelepiped(parallelogram for n = 2) formed

by the columns of A

Examples

det
([

1 2
2 4

])
= 0

det

2 0 0
0 2 0
0 0 2

 = 8

Use the Python numpy.linalg.det function to compute determinants. Better to
use the Python numpy.linalg.cond function to determine singular matrices.
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Solving a system, Cramer’s Rule

The solution of the system of equations Ax = b is given by,

Cramer’s Rule

xk =
det(A|kb)

det(A)
(3)

where A|kb denotes the matrix A with the kth column replaced by b.

but Cramer’s Rule is bad!!!
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What’s the big deal? ....cost
Consider the time it takes to compute one of the determinants. Denote
A ′ = (aij) = A|kb for a fixed k and expand the determinant down the first
column,

det((aij)) = a11(−1)1+1det(A ′
1,1) + a21(−1)2+1det(A ′

2,1) + . . .+ an1(−1)n+1det(A ′
n,1)
(4)

so the cost is greater than n multiplications and n− 1 additions plus the cost of
performing the n determinants det(A ′

i,1) for i = 1, . . . , n. We can write a formula
for a lower bound on the cost of computing the determinant of an nxn matrix
A ′ as,

cost(det(A ′)) = n ∗ cost(det(A ′′)) (5)

where A ′′ is a matrix of size (n − 1)x(n − 1). Since for a matrix A of size 1x1
we have cost(det(A)) = 1 we can write, for a lower bound on the cost,

cost(det(A ′)) = n! (6)
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O(n!)
How large is n! ?

Sterling’s Formula

n! ≈
√

2πn
(n

e

)n
(7)

humans: milliFLOPS
hand calculators: 10 FLOPS
desktops: a few GFLOPS (109 FLOPS)
Intel Core i7 980 XE 107.55 GFLOPS
ATI Radeon HD4800 1 TERAFLOP (1012 FLOPS)
Tianhe-I 2.5 petaflops (1015 FLOPS)

Example: n!, for n = 100

100! ≈ 9.3 ∗ 10157 (8)

At 1012 FLOPS = 1 TERAFLOPS it would take 9.3 ∗ 10157/1012 seconds
≈ 3 ∗ 10138 years where the age of the universe is ONLY ≈ 1.4 ∗ 1010 years!!!
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Remember Big-O ?

How to measure the impact of n on algorithmic cost?

O(·)
Let g(n) be a function of n. Then define

O(g(n)) = {f (n) |∃c, n0 > 0 : 0 6 f (n) 6 cg(n), ∀n > n0}

That is, f (n) ∈ O(g(n)) if there is a constant c such that 0 6 f (n) 6 cg(n) is
satisfied.

assume non-negative functions (otherwise add | · |) to the definitions
f (n) ∈ O(g(n)) represents an asymptotic upper bound on f (n) up to a
constant
example: f (n) = 3

√
n + 2 log n + 8n + 85n2 ∈ O(n2)
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Moore...
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BLAS

Basic Linear Algebra Subprograms (BLAS) interface introduced APIs for
common linear algebra tasks

Level 1: vector operations (dot products, vector norms, etc) e.g.

y← αx + y (9)
y← x ∗ y (10)

y← ||x|| (11)

Level 2: matrix-vector operations, e.g.

y← αA ∗ x + B ∗ y

Level 3: matrix-matrix operations, e.g.

C← αA ∗ B + βC

optimized versions of the reference BLAS are used everyday: ATLAS, etc.
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vec-vec, mat-vec, mat-mat

inner product of u and v both [n× 1]

σ = uTv = u1v1 + · · ·+ unvn

→ n multiplies, n − 1 additions
→ O(n) flops
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vec-vec, mat-vec, mat-mat

mat-vec of A ([n× n]) and u ([n× 1])

1 for i = 1, . . . , n
2 for j = 1, . . . , n
3 v(i) = a(i, j)u(j) + v(i)
4 end

5 end

→ n2 multiplies, n2 additions
→ O(n2) flops
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vec-vec, mat-vec, mat-mat

mat-mat of A ([n× n]) and B ([n× n])

1 for j = 1, . . . , n
2 for k = 1, . . . , n
3 for i = 1, . . . , n
4 C(k, j) = A(k, i)B(i, j) + C(k, j)
5 end

6 end

7 end

→ n3 multiplies, n3 additions
→ O(n3) flops
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vec-vec, mat-vec, mat-mat

Operation FLOPS
uTv O(n)
Au O(n2)
AB O(n3)
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Gaussian Elimination

Solving Diagonal Systems
Solving Triangular Systems
Gaussian Elimination Without Pivoting

I Hand Calculations
I Cartoon Version
I The Algorithm

Gaussian Elimination with Pivoting
I Row or Column Interchanges, or Both
I Implementation

Solving Systems with the Backslash Operator
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Solving Diagonal Systems

The system defined by Ax = b, where

A =

1 0 0
0 3 0
0 0 5

 b =

 −1
6

−15



is equivalent to
x1 = −1

3x2 = 6
5x3 = −15

The solution is

x1 = −1 x2 =
6
3
= 2 x3 =

−15
5

= −3
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Solving Diagonal Systems

Listing 1: Diagonal System Solution
1 given A, b
2 for i = 1 . . . n
3 xi = bi/ai,i

4 end

In Python:

1 >>> A = ... # A is a diagonal matrix

2 >>> b = ... # b is a row vector

3 >>> x = b/numpy.diag(A)

This is the only place where element-by-element division (/) has anything to
do with solving linear systems of equations.
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Operations?

Try...
Sketch out an operation count to solve a diagonal system of equations...

cheap!
one division n times −→ O(n) FLOPS
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Triangular Systems

The generic lower and upper triangular matrices are

L =


l11 0 · · · 0
l21 l22 0
...

. . .
...

ln1 · · · lnn


and

U =


u11 u12 · · · u1n
0 u22 u2n
...

. . .
...

0 · · · unn


The triangular systems

Ly = b Ux = c

are easily solved by forward substitution and backward substitution,
respectively
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Solving Triangular Systems
The system defined by Ax = b, where

A =

 4 0 0
−2 3 0

2 1 −2

 b =

 8
−1

9



is equivalent to

4x1 = 8
−2x1 + 3x2 = −1

2x1 + x2 + −2x3 = 9

Solve in forward order (first equation is solved first)

x1 =
8
4
= 2 x2 =

1
3
(−1 + 2x1) =

3
3
= 1

x3 =
1

−2
(9 − x2 − 2x1) =

4
−2

= −2
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Solving Triangular Systems

Solving for x1, x2, . . . , xn for a lower triangular system is called forward
substitution.

1 given L, b
2 x1 = b1/`11

3 for i = 2 . . . n
4 s = bi

5 for j = 1 . . . i − 1
6 s = s − `i,jxj

7 end

8 xi = s/`i,i
9 end

Using forward or backward substitution is sometimes referred to as performing
a triangular solve.
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Operations?

Try...
Sketch out an operation count to solve a triangular system of equations...

cheap!
begin in the upper corner: 1 div
row 2: 1 mult, 1 add, 1 div, or 3 FLOPS
row 3: 2 mult, 2 add, 1 div, or 5 FLOPS
row 4: 3 mult, 3 add, 1 div, or 7 FLOPS
...
row k: 2k − 1 FLOPS

Total FLOPS?
∑n

k=1 2k − 1 = 2 n(n+1)
2 − n or O(n2) FLOPS
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