Lecture 5
 Matrix, Vector Operations

T. Gambill

Department of Computer Science University of Illinois at Urbana-Champaign

February 14, 2012

Goals:

- recall linear algebra oun!
- motivation: why do we need to solve a linear system of equations?
- cost analysis of basic operations
- identify basic solution schemes to systems

Prereq

Linear Algebra is a prerequisite of the course!

- look at Lecture 5a notes

Why this is important:

- matrix problems arise in many areas of CS (information sciences, graphics, design, etc)
- Basic Linear Algebra Subprograms (BLAS) is an interface standard for operations
- simple systems set the stage for further development: avoiding error, avoiding large costs

Motivation: Newton's Method in higher dimensions

Given an initial guess \mathbf{x}_{0} we compute the matrix $\mathbf{J}\left(\mathbf{x}_{0}\right)$ is called the Jacobian,

$$
\mathbf{J}_{\mathbf{i j}}=\frac{\partial f_{i}\left(\mathbf{x}_{0}\right)}{\partial x_{j}} .
$$

and we solve the following system of equations for $\mathrm{x}_{\mathbf{1}}$,

$$
\mathbf{x}_{\mathbf{1}}=\mathbf{x}_{\mathbf{0}}-\mathbf{J}^{-1}\left(\mathbf{x}_{\mathbf{0}}\right) * \mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right)
$$

Although, we will later see why we should (and can) avoid computing the inverse of the Jacobian and instead solve the system of equations,

$$
\mathbf{J}\left(\mathbf{x}_{0}\right) *\left(\mathbf{x}_{\mathbf{1}}-\mathbf{x}_{\mathbf{0}}\right)=-\mathbf{f}\left(\mathbf{x}_{\mathbf{0}}\right)
$$

We check to see if $\mathbf{x}_{\mathbf{1}}$ is a root and if not then we continue to iterate.

$$
\mathbf{J}\left(\mathbf{x}_{\mathbf{k}}\right) *\left(\mathbf{x}_{\mathbf{k}+\mathbf{1}}-\mathbf{x}_{\mathbf{k}}\right)=-\mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)
$$

We may save calculations of $\mathbf{J}\left(\mathbf{x}_{\mathbf{k}}\right)$ by using the same value of $\mathbf{J}\left(\mathbf{x}_{\mathbf{k}}\right)$ over several iterations.

Motivation: Graph Theory

- Given a graph, we can construct an associated square matrix A, called the Adjacency Matrix
- If we denote $A=\left[a_{i j}\right]$ then

$$
a_{i j}= \begin{cases}1 & \text { if node } \mathrm{i} \text { is connected to node } \mathrm{j} \tag{1}\\ 0 & \text { otherwise }\end{cases}
$$

(6) $\Rightarrow\left[\begin{array}{llllll}0 & 1 & 0 & 0 & 1 & 0 \\ 1 & 0 & 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0\end{array}\right]$

Motivation: Graph Theory

A path (walk) of length l from node i to node j in a graph is a sequence of l edges of the graph that starts at node i and terminates at node j.

Counting paths

Given an adjacency matrix A corresponding to a graph then the number of different paths of length $l>0$ from node i to node j equals the value $b_{i j}$ where $\left[b_{i j}\right]=B=A^{l}$.

What is the cost of computing A^{l} ?

Motivation: Graph Theory

- Given a graph, we can construct an associated square matrix D, called the Degree matrix
- If we denote $D=\left[d_{i j}\right]$ then

$$
d_{i j}= \begin{cases}k & \text { if } \mathrm{i}=\mathrm{j} \text { and node } \mathrm{i} \text { has } \mathrm{k} \text { edges incident(connected) to node } \mathrm{i} \tag{2}\\ 0 & \text { otherwise }\end{cases}
$$

Motivation: Graph Theory

- Given a graph, construct associated square matrix \mathcal{L}, called the graph Laplacian
- $\mathcal{L}=D-A$ where D is the Degree Matrix and A is the Adjacency Matrix for the graph.
(6) $\Rightarrow\left[\begin{array}{rrrrrr}2 & -1 & 0 & 0 & -1 & 0 \\ -1 & 3 & -1 & 0 & -1 & 0 \\ 0 & -1 & 2 & -1 & 0 & 0 \\ 0 & 0 & -1 & 3 & -1 & -1 \\ -1 & -1 & 0 & -1 & 3 & 0 \\ 0 & 0 & 0 & -1 & 0 & 1\end{array}\right]$

Motivation: Graph Theory

Graph is Laplacian useful for

- Calculating spanning trees
- Partitioning a graph evenly
- and many more....

To use the graph Laplacian, you need to solve $\mathcal{L} x=b$ for many different vectors, b.

Motivation: Graph Theory (Multiple Right Hand Sides)

- Solve $A x=b$ for many different b vectors
- For k different b vectors, Gaussian Elimination costs $\mathcal{O}\left(k n^{3}\right)$
- We can do better: LU factorization

Matrix Inverse

Let A be a square (i.e. $n \times n$) with real elements. The inverse of A is designated A^{-1}, and has the property that

$$
A^{-1} A=I \quad \text { and } \quad A A^{-1}=I
$$

The formal solution to $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}=A^{-1} \mathbf{b}$.

$$
\begin{aligned}
A \mathbf{x} & =\mathbf{b} \\
A^{-1} A \mathbf{x} & =A^{-1} \mathbf{b} \\
I \mathbf{x} & =A^{-1} \mathbf{b} \\
\mathbf{x} & =A^{-1} \mathbf{b}
\end{aligned}
$$

Matrix Inverse

- formal solution to $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}=A^{-1} \mathbf{b}$

Matrix Inverse

- formal solution to $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}=A^{-1} \mathbf{b}$
- BUT it is bad evaluate x this way

Matrix Inverse

- formal solution to $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}=A^{-1} \mathbf{b}$
- BUT it is bad evaluate x this way
- why?

Matrix Inverse

- formal solution to $A \mathbf{x}=\mathbf{b}$ is $\mathbf{x}=A^{-1} \mathbf{b}$
- BUT it is bad evaluate x this way
- why?
- we will not form A^{-1}, but solve for \mathbf{x} directly using Gaussian elimination.

Why do we care as Numerical Analysts?

Open questions:

- How expensive is it to solve $A \mathbf{x}=\mathbf{b}$?
- What problems (errors) will we encounter solving $A \mathbf{x}=\mathbf{b}$?
- Some matrices are easy/cheap to use: diagonal, tridiagonal, etc.
- are there others? what makes something a "good" matrix numerically?
- are there bad ones? how do we identify them numerically?
- what do actual numerical analysts, engineers, developers, etc use?!?!

Formal Solution when A is $n \times n$

The formal solution to $A \mathbf{x}=\mathbf{b}$ is

$$
\mathbf{x}=A^{-1} \mathbf{b}
$$

where A is $n \times n$.
If A^{-1} exists then A is said to be nonsingular.
If A^{-1} does not exist then A is said to be singular.

Formal Solution when A is $n \times n$

If A^{-1} exists then

$$
A \mathbf{x}=\mathbf{b} \quad \Longrightarrow \quad \mathbf{x}=A^{-1} \mathbf{b}
$$

but
Do not compute the solution to $A \mathbf{x}=\mathbf{b}$ by
finding A^{-1}, and then multiplying \mathbf{b} by A^{-1} !

We see: $\quad \mathbf{x}=A^{-1} \mathbf{b}$
We do: Solve $A \mathbf{x}=\mathbf{b}$ by Gaussian elimination or an equivalent algorithm

Singularity of A

If an $n \times n$ matrix, A, is singular then

- the columns of A are linearly dependent
- the rows of A are linearly dependent
- $\operatorname{rank}(A)<n$
- $\operatorname{det}(A)=0$
- A^{-1} does not exist
- a solution to $A \mathbf{x}=\mathbf{b}$ may not exist
- If a solution to $A \mathbf{x}=\mathbf{b}$ exists, it is not unique

Summary of Requirements for Solution of $A x=b$

Given the $n \times n$ matrix A and the $n \times 1$ vector, \mathbf{b}

- the solution to $A \mathbf{x}=\mathbf{b}$ exists and is unique for any \mathbf{b} if and only if $\operatorname{rank}(A)=n$.

Recall: rank = \# of linearly independent rows or columns

Recall: $\operatorname{Range}(A)=$ set of vectors y such that $A \mathbf{x}=\mathbf{y}$ for some \mathbf{x}

Solving a system

$$
A \mathbf{x}=\mathbf{b}
$$

Three situations:
(1) A is nonsingular: There exists a unique solution $\mathbf{x}=A^{-1} \mathbf{b}$
(2) A is singular and $\mathbf{b} \in \operatorname{Range}(A)$: There are infinite solutions.
(3) A is singular and $\mathbf{b} \notin \operatorname{Range}(A)$: There are no solutions.
(1) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 4\end{array}\right] \mathbf{b}=\left[\begin{array}{l}1 \\ 8\end{array}\right]$, then $\mathbf{x}=\left[\begin{array}{c}1 / 2 \\ 2\end{array}\right]$.
(2) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right] \mathbf{b}=\left[\begin{array}{l}1 \\ 0\end{array}\right]$, then infinitely many solutions. $\mathbf{x}=\left[\begin{array}{c}1 / 2 \\ \alpha\end{array}\right]$.
(3) $A=\left[\begin{array}{ll}2 & 0 \\ 0 & 0\end{array}\right] \mathbf{b}=\left[\begin{array}{l}1 \\ 1\end{array}\right]$, then no solutions.

Solving a system, Cramer's Rule

The Determinant

Given a matrix $A_{n x n}=\left(a_{i j}\right)$ the determinant is defined as,

$$
\operatorname{det}(A)=\sum_{i=0}^{n}(-1)^{i+j} * a_{i j} * \operatorname{det}\left(A_{i, j}\right)
$$

where j (the column) is fixed and $A_{i, j}$ represents the "reduced" matrix of A with it's $i^{\text {th }}$ row and $j^{t} h$ column removed.

The above definition is called the column sum expansion. There is also a row sum expansion and other ways to compute the determinant. Note that the det function maps $n x n$ (square) matrices into \mathbb{R} the real numbers.

Solving a system, Cramer's Rule

The det function has the following properties:
(1) $\operatorname{det}(A B)=\operatorname{det}(A) \operatorname{det}(B)$
(2) $\operatorname{det}(I)=1$ where I is the $n x n$ identity matrix
(3) $\operatorname{det}\left(A^{T}\right)=\operatorname{det}(A)$
(C) $\operatorname{det}(A)=0$ if and only if A is singular
(5) $|\operatorname{det}(A)|=$ the volume of the parallelepiped(parallelogram for $n=2$) formed by the columns of A

Examples

- $\operatorname{det}\left(\left[\begin{array}{ll}1 & 2 \\ 2 & 4\end{array}\right]\right)=0$
- $\operatorname{det}\left(\left[\begin{array}{lll}2 & 0 & 0 \\ 0 & 2 & 0 \\ 0 & 0 & 2\end{array}\right]\right)=8$

Use the Python numpy.linalg.det function to compute determinants. Better to use the Python numpy.linalg.cond function to determine singular matrices.

Solving a system, Cramer's Rule

The solution of the system of equations $A \mathbf{x}=\mathbf{b}$ is given by,

Cramer's Rule

$$
\begin{equation*}
x_{k}=\frac{\operatorname{det}\left(\left.A\right|_{k} \mathbf{b}\right)}{\operatorname{det}(A)} \tag{3}
\end{equation*}
$$

where $\left.A\right|_{k} \mathbf{b}$ denotes the matrix A with the $k^{t h}$ column replaced by \mathbf{b}.
but Cramer's Rule is bad!!!

What's the big deal?cost

Consider the time it takes to compute one of the determinants. Denote $A^{\prime}=\left(a_{i j}\right)=\left.A\right|_{k} \mathbf{b}$ for a fixed k and expand the determinant down the first column,
$\operatorname{det}\left(\left(a_{i j}\right)\right)=a_{11}(-1)^{1+1} \operatorname{det}\left(A_{1,1}^{\prime}\right)+a_{21}(-1)^{2+1} \operatorname{det}\left(A_{2,1}^{\prime}\right)+\ldots+a_{n 1}(-1)^{n+1} \operatorname{det}\left(A_{n, 1}^{\prime}\right)$
so the cost is greater than n multiplications and $n-1$ additions plus the cost of performing the n determinants $\operatorname{det}\left(A_{i, 1}^{\prime}\right)$ for $i=1, \ldots, n$. We can write a formula for a lower bound on the cost of computing the determinant of an $n \times n$ matrix A^{\prime} as,

$$
\begin{equation*}
\operatorname{cost}\left(\operatorname{det}\left(A^{\prime}\right)\right)=n * \operatorname{cost}\left(\operatorname{det}\left(A^{\prime \prime}\right)\right) \tag{5}
\end{equation*}
$$

where $A^{\prime \prime}$ is a matrix of size $(n-1) x(n-1)$. Since for a matrix A of size $1 x 1$ we have $\operatorname{cost}(\operatorname{det}(A))=1$ we can write, for a lower bound on the cost,

$$
\operatorname{cost}\left(\operatorname{det}\left(A^{\prime}\right)\right)=n!
$$

$\mathrm{O}(\mathrm{n}!)$

How large is n ! ?

Sterling's Formula

$$
\begin{equation*}
n!\approx \sqrt{2 \pi n}\left(\frac{n}{e}\right)^{n} \tag{7}
\end{equation*}
$$

- humans: milliFLOPS
- hand calculators: 10 FLOPS
- desktops: a few GFLOPS (10^{9} FLOPS)
- Intel Core i7 980 XE 107.55 GFLOPS
- ATI Radeon HD4800 1 TERAFLOP (10 0^{12} FLOPS)
- Tianhe-I 2.5 petaflops (10^{15} FLOPS)

Example: $n!$, for $n=100$

$$
\begin{equation*}
100!\approx 9.3 * 10^{157} \tag{8}
\end{equation*}
$$

At 10^{12} FLOPS $=1$ TERAFLOPS it would take $9.3 * 10^{157} / 10^{12}$ seconds $\approx 3 * 10^{138}$ years where the age of the universe is ONLY $\approx 1.4 * 10^{10}$ years!!!

Remember Big-O ?

How to measure the impact of n on algorithmic cost?
$\mathcal{O}(\cdot)$
Let $g(n)$ be a function of n. Then define

$$
\mathcal{O}(g(n))=\left\{f(n) \mid \exists c, n_{0}>0: 0 \leqslant f(n) \leqslant c g(n), \forall n \geqslant n_{0}\right\}
$$

That is, $f(n) \in \mathcal{O}(g(n))$ if there is a constant c such that $0 \leqslant f(n) \leqslant c g(n)$ is satisfied.

- assume non-negative functions (otherwise add $|\cdot|$) to the definitions
- $f(n) \in \mathcal{O}(g(n))$ represents an asymptotic upper bound on $f(n)$ up to a constant
- example: $f(n)=3 \sqrt{n}+2 \log n+8 n+85 n^{2} \in \mathcal{O}\left(n^{2}\right)$

Moore...

Moore's Law
The Fifth Paradigm
Logarithmic Plot

BLAS

Basic Linear Algebra Subprograms (BLAS) interface introduced APIs for common linear algebra tasks

- Level 1: vector operations (dot products, vector norms, etc) e.g.

$$
\begin{array}{r}
\mathbf{y} \leftarrow \alpha \mathbf{x}+\mathbf{y} \\
\mathbf{y} \leftarrow \mathbf{x} * \mathbf{y} \\
\mathbf{y} \leftarrow\|\mathbf{x}\| \tag{11}
\end{array}
$$

- Level 2: matrix-vector operations, e.g.

$$
\mathbf{y} \leftarrow \alpha A * \mathbf{x}+B * \mathbf{y}
$$

- Level 3: matrix-matrix operations, e.g.

$$
C \leftarrow \alpha A * B+\beta C
$$

- optimized versions of the reference BLAS are used everyday: ATLAS, eto T

vec-vec, mat-vec, mat-mat

- inner product of \mathbf{u} and \mathbf{v} both $[n \times 1]$

$$
\sigma=\mathbf{u}^{T} \mathbf{v}=u_{1} v_{1}+\cdots+u_{n} v_{n}
$$

- $\rightarrow n$ multiplies, $n-1$ additions
- $\rightarrow \mathcal{O}(n)$ flops

vec-vec, mat-vec, mat-mat

- mat-vec of $A([n \times n])$ and $u([n \times 1])$

1	for $i=1, \ldots, n$
2	for $j=1, \ldots, n$
3	$v(i)=a(i, j) u(j)+v(i)$
4	end
5	end

- $\rightarrow n^{2}$ multiplies, n^{2} additions
- $\rightarrow \mathcal{O}\left(n^{2}\right)$ flops

vec-vec, mat-vec, mat-mat

- mat-mat of $A([n \times n])$ and $B([n \times n])$

1	for $j=1, \ldots, n$
2	for $k=1, \ldots, n$
3	for $i=1, \ldots, n$
4	$C(k, j)=A(k, i) B(i, j)+C(k, j)$
5	end
6	end
7	end

- $\rightarrow n^{3}$ multiplies, n^{3} additions
- $\rightarrow \mathcal{O}\left(n^{3}\right)$ flops

vec-vec, mat-vec, mat-mat

Operation	FLOPS
$u^{T} v$	$\mathcal{O}(n)$
$A u$	$\mathcal{O}\left(n^{2}\right)$
$A B$	$\mathcal{O}\left(n^{3}\right)$

Gaussian Elimination

- Solving Diagonal Systems
- Solving Triangular Systems
- Gaussian Elimination Without Pivoting
- Hand Calculations
- Cartoon Version
- The Algorithm
- Gaussian Elimination with Pivoting
- Row or Column Interchanges, or Both
- Implementation
- Solving Systems with the Backslash Operator

Solving Diagonal Systems

The system defined by $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right] \quad b=\left[\begin{array}{r}
-1 \\
6 \\
-15
\end{array}\right]
$$

Solving Diagonal Systems

The system defined by $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right] \quad b=\left[\begin{array}{r}
-1 \\
6 \\
-15
\end{array}\right]
$$

is equivalent to

$$
\begin{array}{rlr}
x_{1} & & =-1 \\
3 x_{2} & & 6 \\
& 5 x_{3} & = \\
& -15
\end{array}
$$

Solving Diagonal Systems

The system defined by $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 3 & 0 \\
0 & 0 & 5
\end{array}\right] \quad b=\left[\begin{array}{r}
-1 \\
6 \\
-15
\end{array}\right]
$$

is equivalent to

$$
\begin{array}{rlrr}
x_{1} & & & -1 \\
& 3 x_{2} & & 6 \\
& & & \\
& 5 x_{3} & & = \\
& -15
\end{array}
$$

The solution is

$$
x_{1}=-1 \quad x_{2}=\frac{6}{3}=2 \quad x_{3}=\frac{-15}{5}=-3
$$

Solving Diagonal Systems

Listing 1: Diagonal System Solution

```
given A, b
for i=1...n
    xi}=\mp@subsup{b}{i}{}/\mp@subsup{a}{i,i}{
end
```


In Python:

$1 \ggg A=\ldots$
$2 \ggg b=\ldots$
\# A is a diagonal matrix
3 >>> x = b/numpy.diag(A)
This is the only place where element-by-element division (/) has anything to do with solving linear systems of equations.

Operations?

Try...
Sketch out an operation count to solve a diagonal system of equations...

Operations?

Try...
Sketch out an operation count to solve a diagonal system of equations...

```
cheap!
one division n times \longrightarrow\mathcal{O}(n) FLOPS
```


Triangular Systems

The generic lower and upper triangular matrices are

$$
L=\left[\begin{array}{cccc}
l_{11} & 0 & \cdots & 0 \\
l_{21} & l_{22} & & 0 \\
\vdots & & \ddots & \vdots \\
l_{n 1} & & \cdots & l_{n n}
\end{array}\right]
$$

and

$$
U=\left[\begin{array}{cccc}
u_{11} & u_{12} & \cdots & u_{1 n} \\
0 & u_{22} & & u_{2 n} \\
\vdots & & \ddots & \vdots \\
0 & & \cdots & u_{n n}
\end{array}\right]
$$

The triangular systems

$$
L \mathbf{y}=\mathbf{b} \quad U \mathbf{x}=\mathbf{c}
$$

are easily solved by forward substitution and backward substitution, respectively

Solving Triangular Systems

The system defined by $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rrr}
4 & 0 & 0 \\
-2 & 3 & 0 \\
2 & 1 & -2
\end{array}\right] \quad b=\left[\begin{array}{r}
8 \\
-1 \\
9
\end{array}\right]
$$

Solving Triangular Systems

The system defined by $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rrr}
4 & 0 & 0 \\
-2 & 3 & 0 \\
2 & 1 & -2
\end{array}\right] \quad b=\left[\begin{array}{r}
8 \\
-1 \\
9
\end{array}\right]
$$

is equivalent to

$$
\begin{aligned}
4 x_{1} & =8 \\
-2 x_{1}+3 x_{2} & = \\
2 x_{1}+x_{2}+-2 x_{3} & =9
\end{aligned}
$$

Solving Triangular Systems

The system defined by $A \mathbf{x}=\mathbf{b}$, where

$$
A=\left[\begin{array}{rrr}
4 & 0 & 0 \\
-2 & 3 & 0 \\
2 & 1 & -2
\end{array}\right] \quad b=\left[\begin{array}{r}
8 \\
-1 \\
9
\end{array}\right]
$$

is equivalent to

$$
\begin{aligned}
4 x_{1} & =8 \\
-2 x_{1}+3 x_{2} & = \\
2 x_{1}+x_{2}+-2 x_{3} & =9
\end{aligned}
$$

Solve in forward order (first equation is solved first)

$$
\begin{array}{ll}
x_{1}=\frac{8}{4}=2 & x_{2}=\frac{1}{3}\left(-1+2 x_{1}\right)=\frac{3}{3}=1 \\
x_{3} & =\frac{1}{-2}\left(9-x_{2}-2 x_{1}\right)=\frac{4}{-2}=-2
\end{array}
$$

Solving Triangular Systems

Solving for $x_{1}, x_{2}, \ldots, x_{n}$ for a lower triangular system is called forward substitution.

```
given L, b
x}=\mp@subsup{b}{1}{}/\mp@subsup{\ell}{11}{
for i=2\ldotsn
    s=\mp@subsup{b}{i}{}
    for j=1\ldots..i-1
        s=s-\ell li,j}\mp@subsup{x}{j}{
        end
        xi=s/\ell li,i
end
```


Solving Triangular Systems

Solving for $x_{1}, x_{2}, \ldots, x_{n}$ for a lower triangular system is called forward substitution.

```
given L, b
x}=\mp@subsup{b}{1}{}/\mp@subsup{\ell}{11}{
for i=2\ldotsn
    s=\mp@subsup{b}{i}{}
    for j=1...i-1
        s=s-\ell li,}\mp@subsup{x}{j}{
        end
        xi=s/\ell l,i
end
```

Using forward or backward substitution is sometimes referred to as performing a triangular solve.

Operations?

Try...
Sketch out an operation count to solve a triangular system of equations...

Operations?

Try...

Sketch out an operation count to solve a triangular system of equations...

cheap!

- begin in the upper corner: 1 div
- row 2: 1 mult, 1 add, 1 div, or 3 FLOPS
- row 3: 2 mult, 2 add, 1 div, or 5 FLOPS
- row 4: 3 mult, 3 add, 1 div, or 7 FLOPS
-
- row k : $2 k-1$ FLOPS

Total FLOPS? $\sum_{k=1}^{n} 2 k-1=2 \frac{n(n+1)}{2}-n$ or $\mathcal{O}\left(n^{2}\right)$ FLOPS

