Lecture 4

Rootfinding: Newton's Method in higher dimensions, secant method,fractals,

 Matlab - fzero
T. Gambill

Department of Computer Science
University of Illinois at Urbana-Champaign

6/16/2013

Newton's Method in higher dimensions

Given $f: \mathbb{R}^{m} \rightarrow \mathbb{R}^{m}$ then we can consider f as a vector of m functions.

$$
\mathbf{f}=\left[\begin{array}{c}
f_{1} \\
f_{2} \\
\vdots \\
f_{m}
\end{array}\right]
$$

where $f_{i}: \mathbb{R}^{m} \rightarrow \mathbb{R}$. We can write the Taylor Series for each f_{i} as follows.

$$
f_{i}\left(\mathbf{x}_{\mathbf{k}+\mathbf{1}}\right)=f_{i}\left(\mathbf{x}_{\mathbf{k}}\right)+\left[\nabla f_{i}\left(\mathbf{x}_{\mathbf{k}}\right)\right]^{T} *\left(\mathbf{x}_{\mathbf{k}+\mathbf{1}}-\mathbf{x}_{\mathbf{k}}\right)+\ldots
$$

Combining these in a columnar vector gives,

$$
\left[\begin{array}{c}
f_{1}\left(\mathbf{x}_{\mathbf{k}+\mathbf{1}}\right) \\
f_{2}\left(\mathbf{x}_{\mathbf{k}+\mathbf{1}}\right) \\
\vdots \\
f_{m}\left(\mathbf{x}_{\mathbf{k}+\mathbf{1}}\right)
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(\mathbf{x}_{\mathbf{k}}\right) \\
f_{2}\left(\mathbf{x}_{\mathbf{k}}\right) \\
\vdots \\
f_{m}\left(\mathbf{x}_{\mathbf{k}}\right)
\end{array}\right]+\mathbf{J} *\left(\mathbf{x}_{\mathbf{k}+\mathbf{1}}-\mathbf{x}_{\mathbf{k}}\right)+\ldots
$$

Newton's Method in higher dimensions

$$
\left[\begin{array}{c}
f_{1}\left(\mathbf{x}_{\mathbf{k}+\mathbf{1}}\right) \\
f_{2}\left(\mathbf{x}_{\mathbf{k}+\mathbf{1}}\right) \\
\vdots \\
f_{m}\left(\mathbf{x}_{\mathbf{k}+\mathbf{1}}\right)
\end{array}\right]=\left[\begin{array}{c}
f_{1}\left(\mathbf{x}_{\mathbf{k}}\right) \\
f_{2}\left(\mathbf{x}_{\mathbf{k}}\right) \\
\vdots \\
f_{m}\left(\mathbf{x}_{\mathbf{k}}\right)
\end{array}\right]+\mathbf{J} *\left(\mathbf{x}_{\mathbf{k}+\mathbf{1}}-\mathbf{x}_{\mathbf{k}}\right)+\ldots
$$

The matrix \mathbf{J} is called the Jacobian,

$$
\mathbf{J}_{i j}=\frac{\partial f_{i}\left(\mathbf{x}_{k}\right)}{\partial x_{j}} .
$$

In the case with one dimension, to obtain Newton's method we ignored higher order terms and set $f\left(x_{k+1}\right)=0$ and then solved for x_{k+1}. We do the same for higher dimensions to obtain the formula,

$$
\mathbf{x}_{\mathbf{k}+\mathbf{1}}=\mathbf{x}_{\mathbf{k}}-\mathbf{J}^{-1} * \mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)
$$

Although, we will later see why we should (and can) avoid computing the inverse of the Jacobian and instead solve the system of equations,

$$
\mathbf{J} *\left(\mathbf{x}_{\mathbf{k}+\mathbf{1}}-\mathbf{x}_{\mathbf{k}}\right)=-\mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)
$$

Newton's Method Example 1

Using the formula,

$$
\mathbf{x}_{\mathbf{k}+\mathbf{1}}=\mathbf{x}_{\mathbf{k}}-\mathbf{J}^{-1} * \mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)
$$

find a root for the system of equations defined by,

$$
\begin{aligned}
& f_{1}(\mathbf{x})=x_{1}+2 x_{2}-2=0 \\
& f_{2}(\mathbf{x})=x_{1}^{2}+4 x_{2}^{2}-4=0
\end{aligned}
$$

(The solution of this system is $[0,1]^{T}$.) The Jacobian is given by,

$$
\mathbf{J}(\mathbf{x})=\left[\begin{array}{cc}
1 & 2 \\
2 x_{1} & 8 x_{2}
\end{array}\right]
$$

If we choose $[1,1]^{T}$ as a starting guess then we generate the following values for each iteration as shown on the next slide.

Newton's Method Example 1

```
I import numpy as np
2 from scipy import optimize
3 import numpy.linalg
4
5 def newton](f,x,tol):
k k = 1
    y = np.array([10.,10.])
    print(' k x_k[0] x k[1] ')
    while numpy.linalg.norm(y) > tol:
        y=f(x)
        delta_x = numpy.linalg. solve(J(x),-y)
        delta_x = delta_x.reshape(2,)
        x = x + delta_x
        print('%5d s2\overline{2.20f %22.20f' % ( }k,\times[0],x[1]))
        k = k + I
def J(x):
    y = np.array([[1.,2.],[2.*x[0],8.*x[1]]])
    return y
2l def f(x):
    y = np.array([[1,*x[0]+2.*x[1]],[x[0]**2+4.*x[1]**2]])-np.array([[2.],[4.]])
    return y
24
25
26if name == " main ":
27 newtonJ(f, np.array([1.,l.]), l.e-8)
```

```
k x_k[0] x_k[1]
```

k x_k[0] x_k[1]
1-0.50000000000000000000 1.25000000000000000000
1-0.50000000000000000000 1.25000000000000000000
2-0.08333333333333331483 1.04166666666666674068
2-0.08333333333333331483 1.04166666666666674068
3-0.00320512820512797170 1.00160256410256409687
3-0.00320512820512797170 1.00160256410256409687
4-0.00000512001310694994 1.00000256000655363131
4-0.00000512001310694994 1.00000256000655363131
5-0.00000000001310730548 1.00000000000655364651
5-0.00000000001310730548 1.00000000000655364651
6-0.00000000000000001246_1.00000000000000000000

```
6-0.00000000000000001246_1.00000000000000000000
```


Newton's Method Example 2

Using the formula,

$$
\mathbf{x}_{\mathbf{k}+\mathbf{1}}=\mathbf{x}_{\mathbf{k}}-\mathbf{J}^{-1} * \mathbf{f}\left(\mathbf{x}_{\mathbf{k}}\right)
$$

find a root for the system of equations defined by,

$$
\begin{aligned}
& f_{1}(\mathbf{x})=x_{1}+2 x_{2}-2=0 \\
& f_{2}(\mathbf{x})=-2 x_{1}+x_{2}-4=0
\end{aligned}
$$

(The solution of this system is $[-1.2,1.6]^{T}$.) The Jacobian is given by,

$$
\mathbf{J}(\mathbf{x})=\left[\begin{array}{cc}
1 & 2 \\
-2 & 1
\end{array}\right]
$$

Why?
If we choose $[1,1]^{T}$ as a starting guess then we generate the following values for each iteration shown on the next slide.

Newton's Method Example 2

```
l import numpy as np
2 from scipy import optimize
3 import numpy.linalg
4
5 def newtonJ(f,x,tol):
6 k = 1
    y = np.array([10.,10.])
    print(' k x_k[0] x_k[l] ')
    while numpy.linalg.norm(y) > tol:
                    y = f2(x)
            delta_x = numpy.linalg.solve(J(x), - y)
            x = x + delta x
            print('%5d %22.20f %22.20f' % (k,x[0],x[1]))
            k = k + 1
15
16 def J(x)
17 y = np.array([[1.,2.],[-2,1.]])
18 return y
19
20 def f2(x):
21 y = np.dot(np.array([[1.,2.],[-2., 1.]]),x)-np.array([[2.],[4.]])
22 return y
23
24
25 if name == " main ":
26 newtonJ(f2, \overline{np.array([[1.],[1.]]), 1.e-8)}
```

```
k x_k[0] x-k[1]
```

k x_k[0] x-k[1]
1 -1.20000000000000017764 1.60000000000000008882
1 -1.20000000000000017764 1.60000000000000008882
2 -1.20000000000000017764_1.60000000000000008882

```
2 -1.20000000000000017764_1.60000000000000008882
```


Fractals: What?

Definition

Fractal A mathematical pattern (geometric object) that is reproducible at any level of magnification or reduction.

Definition

Fractal A term used by Benoit Mandelbrot to refer to geometric objects with fractional dimensions rather than integer dimensions. Also used "fractal" to refer to shapes that are self-similar: they look the same at any zoom level.

Fractals: Application

Scientifically used to describe highly irregular objects

- fractal image compression
- Seismology
- Cosmology
- life sciences:
- clouds and fluid turbulence
- trees
- coastlines

More interesting observations:

- New music/New art
- Video games/graphics
- Chaos theory
- the Butterfly effect: small changes produces large effects

Fractals: Air Pressure

Air channels between two glued pieces of acrylic

T. Gambill (UIUC)

CS 357
$6 / 16 / 2013$

Fractals: high voltage dielectric breakdown

Lichtenberg: Branching discharges decrease to hairlike then to molecular

Fractals: Microwaving a CD

Heat vaporizes the aluminum leaving fractal metallic islands

Fractals: Romanesco Broccoli

growth follows fractal pattern

Fractals: Trees

structure follows fractal pattern

\mathbb{I}

Fractals: Jupiter

Atmosphere modeled with fractals

Fractals: Caves

Stalactite/Stalagmite formation

Fractals: Canyons

Erosion patter

Fractals: Clouds

visualization

Fractals: Ferns

growth

1
T. Gambill (UIUC)

Fractals: Big Trees

 growth
\square

Fractals: leaves

structure

Fractals: lightning

formation

Fractals: cauliflower

Fractals: mountain

formation

1

Fractals: mountain

visualization

Fractals: Norwegian rivers

structure

Fractals: waterfalls

pattern

Fractals: coastlines

structure

Fractals: Math

Recall Complex Numbers: $z \in \mathbb{C}$ means

$$
z=x+i y
$$

where $i=\sqrt{-1}$

Things to notice:

- still think of the $x-y$ plane, but now it's in \mathbb{C}^{1} instead of \mathbb{R}^{2}
- $f(z)=z^{2}+1$ has two roots: $z_{1,2}= \pm i$
- $f(z)=z^{3}+1$ has three roots: $z_{1}=-1, z_{2,3}=\frac{-1 \pm i \sqrt{3}}{2}$
- $f(z)=z^{4}+1$ has four roots: $z_{1,2}=\frac{ \pm \sqrt{2}+i \sqrt{2}}{2}, z_{3,4}=\frac{ \pm \sqrt{2}-i \sqrt{2}}{2}$

Fractals: Newton's Algorithm

The big idea:

- Take a complex function like $f(z)=z^{3}+1$
- Pick a bunch of initial guesses z_{1} as the roots
- Run Newton's Method
- The initial guesses z_{1} will each converge to one of $n=3$ roots
- Color each guess in the plane depending on the root to which it converged

Secant Method

Given two guesses x_{k-1} and x_{k}, the next guess at the root is where the line through $f\left(x_{k-1}\right)$ and $f\left(x_{k}\right)$ crosses the x axis.

Secant Method

Given

$$
\begin{aligned}
x_{k} & =\text { current guess at the root } \\
x_{k-1} & =\text { previous guess at the root }
\end{aligned}
$$

Approximate the first derivative with

$$
f^{\prime}\left(x_{k}\right) \approx \frac{f\left(x_{k}\right)-f\left(x_{k-1}\right)}{x_{k}-x_{k-1}}
$$

Substitute approximate $f^{\prime}\left(x_{k}\right)$ into formula for Newton's method

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

to get

$$
x_{k+1}=x_{k}-f\left(x_{k}\right)\left[\frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\right]
$$

Secant Method

Two versions of this formula are (equivalent in exact math)

$$
x_{k+1}=x_{k}-f\left(x_{k}\right)\left[\frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\right]
$$

and

$$
x_{k+1}=\frac{f\left(x_{k}\right) x_{k-1}-f\left(x_{k-1}\right) x_{k}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}
$$

Equation (\star) is better since it is of the form $x_{k+1}=x_{k}-f\left(x_{k}\right) \Delta$. Even if Δ is inaccurate the change in the estimate of the root will be small at convergence because $f\left(x_{k}\right)$ will also be small.
Equation ($\star \star$) is susceptible to catastrophic cancellation:

- $f\left(x_{k}\right) \rightarrow f\left(x_{k-1}\right)$ as convergence approaches, so cancellation error in denominator can be large.
- $|f(x)| \rightarrow 0$ as convergence approaches, so underflow is possible

Secant Algorithm

```
initialize: }\mp@subsup{x}{1}{}=\ldots,\mp@subsup{x}{2}{}=
for k=2,3\ldots
    x}\mp@subsup{x}{k+1}{}=\mp@subsup{x}{k}{}-f(\mp@subsup{x}{k}{})(\mp@subsup{x}{k}{}-\mp@subsup{x}{k-1}{})/(f(\mp@subsup{x}{k}{})-f(\mp@subsup{x}{k-1}{})
    if converged, stop
end
```

```
l import numpy as np
2 from scipy import optimize
3
4 def secant(f,xprev, x,tol):
5 k = 1
6 print(' k x_k-1 f_k f(x_k)')
7 print('%5d %22.20f %22.20f %11.8g' % (k,xprev,x,f(x)))
8 k = k + 1
9 while np.abs( f(x) ) > tol:
            xnew = x - f(x)*(x - xprev)/(f(x)-f(xprev))
            print('%5d %22.20f %22.20f %l1.8g' % (k,x,xnew,f(xnew)))
            k = k + 1
                    xprev = x
                    x = xnew
15
16
17 def f(x):
18 return x - x**(1./3.) - 2.
19
20
21 if 
```


Secant Example

Solve:

$$
x-x^{1 / 3}-2=0
$$

Python produces the root 3.521379706804568 .

k	$\mathrm{x} k-1$	$\mathrm{x} k$	k
1	4.00000000000000000000	3.00000000000000000000	-0.442249597
2	3.00000000000000000000	3.51734261780859869262	-0.003455471
3	3.51734261780859869262	3.52141665251300262085	$3.1625043 \mathrm{e}-05$
4	3.52141655251300262085	3.52137970442752612499	$-2.0347151 \mathrm{e}-09$
5	3.52137970442752612499	3.521379768045662324	$-1.3322676 \mathrm{e}-15$
6	3.52137970680456602324	3.52137970680456779959	0

Conclusions:

- Converges almost as quickly as Newton's method ($r=\frac{1+\sqrt{5}}{2} \approx 1.62$).
- There is no need to compute $f^{\prime}(x)$.
- The algorithm is simple.
- Two initial guesses are necessary
- Iterations are not guaranteed to stay inside an ordinal bracket.

Divergence of Secant Method

Since

$$
x_{k+1}=x_{k}-f\left(x_{k}\right)\left[\frac{x_{k}-x_{k-1}}{f\left(x_{k}\right)-f\left(x_{k-1}\right)}\right]
$$

the new guess, x_{k+1}, will be far from the old guess whenever $f\left(x_{k}\right) \approx f\left(x_{k-1}\right)$ and $|f(x)|$ is not small.

Summary

- Plot $f(x)$ before searching for roots
- Bracketing finds coarse interval containing roots and singularities
- Bisection is robust, but converges slowly
- Newton's Method
- Requires $f(x)$ and $f^{\prime}(x)$.
- Iterates are not confined to initial bracket.
- Converges rapidly $(r=2)$.
- Diverges if $f^{\prime}(x) \approx 0$ is encountered.
- Secant Method
- Uses $f(x)$ values to approximate $f^{\prime}(x)$.
- Iterates are not confined to initial bracket.
- Converges almost as rapidly as Newton's method ($r \approx 1.62$).
- Diverges if $f^{\prime}(x) \approx 0$ is encountered.

fzero Function

fzero is a hybrid method that combines bisection, secant and reverse quadratic interpolation

```
1 r = fzero('fun',x0)
2 r = fzero('fun',x0,options)
з r = fzero('fun',x0,options,arg1,rg2,...)
```

x0 can be a scalar or a two element vector

- If $x 0$ is a scalar, fzero tries to create its own bracket.
- If $x 0$ is a two element vector, fzero uses the vector as a bracket.

Reverse Quadratic Interpolation

Find the point where the x axis intersects the sideways parabola passing through three pairs of $(x, f(x))$ values.

fzero Function

fzero chooses next root as

- Result of reverse quadratic interpolation (RQI) if that result is inside the current bracket.
- Result of secant step if RQI fails, and if the result of secant method is in inside the current bracket.
- Result of bisection step if both RQI and secant method fail to produce guesses inside the current bracket.

fzero Function

Optional parameters to control fzero are specified with the optimset function.
Tell fzero to display the results of each step:

```
1 >> options = optimset('Display','iter');
```

$2 \gg x$ = fzero('myFun',x0,options)

Tell fzero to use a relative tolerance of 5×10^{-9} :
1 >> options = optimset('TolX',5e-9);
$2 \gg x=$ fzero('myFun', xQ,options)

Tell fzero to suppress all printed output, and use a relative tolerance of 5×10^{-4} :
$1 \gg$ options $=$ optimset('Display','off','TolX', 5e-4);
$2 \gg x=$ fzero('myFun', $x \theta$,options)

fzero Function

Allowable options (specified via optimset):

Option type	Value	Effect
'Display'	'iter'	Show results of each iteration
	'final'	Show root and original bracket
	'off'	Suppress all print out

'TolX' tol Iterate until

$$
|\Delta x|<\max [\text { tol }, \text { tol } * \mathrm{a}, \text { tol } * \mathrm{~b}]
$$

where $\Delta x=(b-a) / 2$, and $[a, b]$ is the current bracket.

The default values of 'Display' and 'TolX' are equivalent to options = optimset('Display','iter','TolX',eps)

fzero example

Take

$$
f(x)=x^{10}-1
$$

$1 \gg \mathrm{f}=@(\mathrm{x}) \mathrm{x} \cdot{ }^{\wedge} 10-1 ;$
$2 \gg$ options $=$ optimset('display', 'iter');
$3 \gg[x, f x]=f z e r o(f, 0.5$, options)

Instructor Notes

- Approximating $\frac{d f(x)}{d x} \approx \frac{\operatorname{Im}(f(x+i h))}{h}$ where $i=\sqrt{-1}$ and $h \in \mathbb{R}$ where $h \approx 0$

