
Lecture 4
Rootfinding: Newton’s Method in higher dimensions, secant method,fractals,

Matlab - fzero

T. Gambill

Department of Computer Science
University of Illinois at Urbana-Champaign

6/16/2013

T. Gambill (UIUC) CS 357 6/16/2013 1 / 44

Newton’s Method in higher dimensions

Given f : Rm → Rm then we can consider f as a vector of m functions.

f =


f1
f2
...

fm


where fi : Rm → R. We can write the Taylor Series for each fi as follows.

fi(xk+1) = fi(xk) + [∇fi(xk)]
T ∗ (xk+1 − xk) + . . .

Combining these in a columnar vector gives,
f1(xk+1)
f2(xk+1)

...
fm(xk+1)

 =


f1(xk)
f2(xk)

...
fm(xk)

+ J ∗ (xk+1 − xk) + . . .

T. Gambill (UIUC) CS 357 6/16/2013 2 / 44

Newton’s Method in higher dimensions


f1(xk+1)
f2(xk+1)

...
fm(xk+1)

 =


f1(xk)
f2(xk)

...
fm(xk)

+ J ∗ (xk+1 − xk) + . . .

The matrix J is called the Jacobian,

Jij =
∂fi(xk)

∂xj
.

In the case with one dimension, to obtain Newton’s method we ignored higher
order terms and set f (xk+1) = 0 and then solved for xk+1. We do the same for
higher dimensions to obtain the formula,

xk+1 = xk − J−1 ∗ f(xk)

Although, we will later see why we should (and can) avoid computing the
inverse of the Jacobian and instead solve the system of equations,

J ∗ (xk+1 − xk) = −f(xk)

T. Gambill (UIUC) CS 357 6/16/2013 3 / 44

Newton’s Method Example 1

Using the formula,
xk+1 = xk − J−1 ∗ f(xk)

find a root for the system of equations defined by,

f1(x) = x1 + 2x2 − 2 = 0
f2(x) = x2

1 + 4x2
2 − 4 = 0

(The solution of this system is [0, 1]T.) The Jacobian is given by,

J(x) =
[

1 2
2x1 8x2

]
If we choose [1, 1]T as a starting guess then we generate the following values
for each iteration as shown on the next slide.

T. Gambill (UIUC) CS 357 6/16/2013 4 / 44

Newton’s Method Example 1

T. Gambill (UIUC) CS 357 6/16/2013 5 / 44

Newton’s Method Example 2

Using the formula,
xk+1 = xk − J−1 ∗ f(xk)

find a root for the system of equations defined by,

f1(x) = x1 + 2x2 − 2 = 0
f2(x) = −2x1 + x2 − 4 = 0

(The solution of this system is [−1.2, 1.6]T.) The Jacobian is given by,

J(x) =
[

1 2
−2 1

]
Why?
If we choose [1, 1]T as a starting guess then we generate the following values
for each iteration shown on the next slide.

T. Gambill (UIUC) CS 357 6/16/2013 6 / 44

Newton’s Method Example 2

T. Gambill (UIUC) CS 357 6/16/2013 7 / 44

Fractals: What?

Definition
Fractal A mathematical pattern (geometric object) that is reproducible at any
level of magnification or reduction.

Definition
Fractal A term used by Benoit Mandelbrot to refer to geometric objects with
fractional dimensions rather than integer dimensions. Also used ”fractal” to
refer to shapes that are self-similar: they look the same at any zoom level.

T. Gambill (UIUC) CS 357 6/16/2013 8 / 44

Fractals: Application

Scientifically used to describe highly irregular objects
fractal image compression
Seismology
Cosmology
life sciences:

I clouds and fluid turbulence
I trees
I coastlines

More interesting observations:
New music/New art
Video games/graphics
Chaos theory
the Butterfly effect: small changes produces large effects

T. Gambill (UIUC) CS 357 6/16/2013 9 / 44

Fractals: Air Pressure
Air channels between two glued pieces of acrylic

T. Gambill (UIUC) CS 357 6/16/2013 10 / 44

Fractals: high voltage dielectric breakdown
Lichtenberg: Branching discharges decrease to hairlike then to molecular

T. Gambill (UIUC) CS 357 6/16/2013 11 / 44

Fractals: Microwaving a CD
Heat vaporizes the aluminum leaving fractal metallic islands

T. Gambill (UIUC) CS 357 6/16/2013 12 / 44

Fractals: Romanesco Broccoli
growth follows fractal pattern

T. Gambill (UIUC) CS 357 6/16/2013 13 / 44

Fractals: Trees
structure follows fractal pattern

T. Gambill (UIUC) CS 357 6/16/2013 14 / 44

Fractals: Jupiter
Atmosphere modeled with fractals

T. Gambill (UIUC) CS 357 6/16/2013 15 / 44

Fractals: Caves
Stalactite/Stalagmite formation

T. Gambill (UIUC) CS 357 6/16/2013 16 / 44

Fractals: Canyons
Erosion patter

T. Gambill (UIUC) CS 357 6/16/2013 17 / 44

Fractals: Clouds
visualization

T. Gambill (UIUC) CS 357 6/16/2013 18 / 44

Fractals: Ferns
growth

T. Gambill (UIUC) CS 357 6/16/2013 19 / 44

Fractals: Big Trees
growth

T. Gambill (UIUC) CS 357 6/16/2013 20 / 44

Fractals: leaves
structure

T. Gambill (UIUC) CS 357 6/16/2013 21 / 44

Fractals: lightning
formation

T. Gambill (UIUC) CS 357 6/16/2013 22 / 44

Fractals: cauliflower
structure

T. Gambill (UIUC) CS 357 6/16/2013 23 / 44

Fractals: mountain
formation

T. Gambill (UIUC) CS 357 6/16/2013 24 / 44

Fractals: mountain
visualization

T. Gambill (UIUC) CS 357 6/16/2013 25 / 44

Fractals: Norwegian rivers
structure

T. Gambill (UIUC) CS 357 6/16/2013 26 / 44

Fractals: waterfalls
pattern

T. Gambill (UIUC) CS 357 6/16/2013 27 / 44

Fractals: coastlines
structure

T. Gambill (UIUC) CS 357 6/16/2013 28 / 44

Fractals: Math

Recall Complex Numbers: z ∈ C means

z = x + iy,

where i =
√
−1

Things to notice:
still think of the x-y plane, but now it’s in C1 instead of R2

f (z) = z2 + 1 has two roots: z1,2 = ±i

f (z) = z3 + 1 has three roots: z1 = −1, z2,3 = −1±i
√

3
2

f (z) = z4 + 1 has four roots: z1,2 = ±
√

2+i
√

2
2 , z3,4 = ±

√
2−i
√

2
2

T. Gambill (UIUC) CS 357 6/16/2013 29 / 44

Fractals: Newton’s Algorithm
The big idea:

Take a complex function like f (z) = z3 + 1
Pick a bunch of initial guesses z1 as the roots
Run Newton’s Method
The initial guesses z1 will each converge to one of n = 3 roots
Color each guess in the plane depending on the root to which it
converged

T. Gambill (UIUC) CS 357 6/16/2013 30 / 44

Secant Method

Given two guesses xk−1 and xk, the next guess at the root is where the line
through f (xk−1) and f (xk) crosses the x axis.

T. Gambill (UIUC) CS 357 6/16/2013 31 / 44

Secant Method

Given

xk = current guess at the root
xk−1 = previous guess at the root

Approximate the first derivative with

f ′(xk) ≈
f (xk) − f (xk−1)

xk − xk−1

Substitute approximate f ′(xk) into formula for Newton’s method

xk+1 = xk −
f (xk)

f ′(xk)

to get

xk+1 = xk − f (xk)

[
xk − xk−1

f (xk) − f (xk−1)

]
T. Gambill (UIUC) CS 357 6/16/2013 32 / 44

Secant Method

Two versions of this formula are (equivalent in exact math)

xk+1 = xk − f (xk)

[
xk − xk−1

f (xk) − f (xk−1)

]
(?)

and
xk+1 =

f (xk)xk−1 − f (xk−1)xk

f (xk) − f (xk−1)
(??)

Equation (?) is better since it is of the form xk+1 = xk − f (xk)∆. Even if ∆ is
inaccurate the change in the estimate of the root will be small at convergence
because f (xk) will also be small.
Equation (??) is susceptible to catastrophic cancellation:

f (xk)→ f (xk−1) as convergence approaches, so cancellation error in
denominator can be large.
|f (x)|→ 0 as convergence approaches, so underflow is possible

T. Gambill (UIUC) CS 357 6/16/2013 33 / 44

Secant Algorithm

1 initialize: x1 = . . ., x2 = . . .
2 for k = 2, 3 . . .
3 xk+1 = xk − f (xk)(xk − xk−1)/(f (xk) − f (xk−1))
4 if converged , stop

5 end

T. Gambill (UIUC) CS 357 6/16/2013 34 / 44

Secant Example

Solve:
x − x1/3 − 2 = 0

Python produces the root 3.521379706804568.

Conclusions:
Converges almost as quickly as Newton’s method (r = 1+

√
5

2 ≈ 1.62).
There is no need to compute f ′(x).
The algorithm is simple.
Two initial guesses are necessary
Iterations are not guaranteed to stay inside an ordinal bracket.

T. Gambill (UIUC) CS 357 6/16/2013 35 / 44

Divergence of Secant Method

x1 x2

f(x3)

x3

f(x2)

f (x1)

f '(x) ≈ 0

Since

xk+1 = xk − f (xk)

[
xk − xk−1

f (xk) − f (xk−1)

]
the new guess, xk+1, will be far from the old guess whenever f (xk) ≈ f (xk−1)
and |f (x)| is not small.

T. Gambill (UIUC) CS 357 6/16/2013 36 / 44

Summary

Plot f (x) before searching for roots

Bracketing finds coarse interval containing roots and singularities

Bisection is robust, but converges slowly

Newton’s Method
I Requires f (x) and f ′(x).
I Iterates are not confined to initial bracket.
I Converges rapidly (r = 2).
I Diverges if f ′(x) ≈ 0 is encountered.

Secant Method
I Uses f (x) values to approximate f ′(x).
I Iterates are not confined to initial bracket.
I Converges almost as rapidly as Newton’s method (r ≈ 1.62).
I Diverges if f ′(x) ≈ 0 is encountered.

T. Gambill (UIUC) CS 357 6/16/2013 37 / 44

fzero Function

fzero is a hybrid method that combines bisection, secant and reverse
quadratic interpolation

1 r = fzero(’fun’,x0)

2 r = fzero(’fun’,x0,options)

3 r = fzero(’fun’,x0,options,arg1,rg2,...)

x0 can be a scalar or a two element vector
If x0 is a scalar, fzero tries to create its own bracket.
If x0 is a two element vector, fzero uses the vector as a bracket.

T. Gambill (UIUC) CS 357 6/16/2013 38 / 44

Reverse Quadratic Interpolation

Find the point where the x axis intersects the sideways parabola passing
through three pairs of (x, f (x)) values.

0 0.5 1 1.5 2
−5

0

5

10

15

20

T. Gambill (UIUC) CS 357 6/16/2013 39 / 44

fzero Function

fzero chooses next root as
Result of reverse quadratic interpolation (RQI) if that result is inside the
current bracket.
Result of secant step if RQI fails, and if the result of secant method is in
inside the current bracket.
Result of bisection step if both RQI and secant method fail to produce
guesses inside the current bracket.

T. Gambill (UIUC) CS 357 6/16/2013 40 / 44

fzero Function

Optional parameters to control fzero are specified with the optimset function.

Tell fzero to display the results of each step:

1 >> options = optimset(’Display’,’iter’);

2 >> x = fzero(’myFun’,x0,options)

Tell fzero to use a relative tolerance of 5× 10−9:

1 >> options = optimset(’TolX’,5e-9);

2 >> x = fzero(’myFun’,x0,options)

Tell fzero to suppress all printed output, and use a relative tolerance of
5× 10−4:

1 >> options = optimset(’Display’,’off’,’TolX’,5e-4);

2 >> x = fzero(’myFun’,x0,options)

T. Gambill (UIUC) CS 357 6/16/2013 41 / 44

fzero Function

Allowable options (specified via optimset):

Option type Value Effect

’Display’ ’iter’ Show results of each iteration

’final’ Show root and original bracket

’off’ Suppress all print out

’TolX’ tol Iterate until

|∆x| < max [tol, tol ∗ a, tol ∗ b]
where ∆x = (b − a)/2, and [a, b] is the current bracket.

The default values of ’Display’ and ’TolX’ are equivalent to

1 options = optimset(’Display’,’iter’,’TolX’,eps)

T. Gambill (UIUC) CS 357 6/16/2013 42 / 44

fzero example

Take
f (x) = x10 − 1

1 >> f = @(x)x.ˆ10 - 1;

2 >> options = optimset(’display’,’iter’);

3 >> [x,fx]=fzero(f,0.5,options)

T. Gambill (UIUC) CS 357 6/16/2013 43 / 44

Instructor Notes

Approximating df(x)
dx ≈

Im(f(x+ih))
h where i =

√
−1 and h ∈ R where h ≈ 0

T. Gambill (UIUC) CS 357 6/16/2013 44 / 44

