Lecture 3

Rootfinding

T. Gambill

Department of Computer Science University of Illinois at Urbana-Champaign

February 14, 2012

Root Finding

Given a function $f(x)$, find x so that $f(x)=0$

Rootfinding

Goals:

- Find roots to equations
- Compare usability of different methods
- Compare convergence properties of different methods
- bracketing methods
(2) Bisection Method
(3) Newton's Method
(9) Secant Method
(5) (opt) fixed point iterations
(0) (opt) special Case: Roots of Polynomials

Roots of $f(x)$

- Any single valued equation $g(x)=h(x)$ can be written as $f(x)=g(x)-h(x)=0$

Example

- Find x so that $\cos (x)=x$
- That is, find where $f(x)=\cos (x)-x=0$

Analyze your Application

- Is the function complicated to evaluate?
- lots of expressions?
- singularities?
- simplify? polynomial?
- How accurate does our root need to be?
- How fast/robust should our method be?

From this, you can pick the right method...

Basic Root Finding Strategy

(1) Plot the function

- Get an initial guess
- Identify problematic parts
(2) Start with the initial guess and iterate

Iteration

We need to study some iterations.

- iteratively finding a root to an equation
- iteratively finding the solution to an algebraic system
- iteratively finding solutions to Ordinary Differential Equations (ODEs)
- ...

Bracket Basics

- A root x is bracketed on $[a, b]$ if $f(a)$ and $f(b)$ have opposite sign.
- Changing signs does not guarantee bracketed, however: singularity

Bracket Algorithm

given: $f(x), x_{m}$ in, $x_{m} a x, n$

Listing 1: Bracket Algorithm

```
dx = (x_max - x_min)/n
```

x_left = x_min
$i=0$
while $i<n$:
i $=\mathbf{i}+1$
x_right = x_left + dx
if (f(x) changes sign in [x_left, x_right]):
save [x_left,x_right]\# as an interval with a root
x_left = x_right

Testing Sign

```
f(a)\timesf(b)<0
```

Should we use?

```
fa = myfunc(a);
fb = myfunc(b);
if(fa*fb<Q)
    (save)
end
```


Better Sign Test

!
 Nope. Underflow...

```
sign()
Use Python's sign function
import numpy as np
fa = myfunc(a);
fb = myfunc(b);
if np.sign(fa) != np.sign(fb):
    (save)
```


Moving forward...

Bracketing is fine. But we need to find the actual root:

- Bisection
- Newton's Method
- Secant Method
- Fixed Point Iteration

Process:
(1) Implement the bracket algorithm to get a visual and brackets
(2) search brackets with these methods

Bisection

Given $f: \mathbb{R} \rightarrow \mathbb{R}$ and $f \in C([a, b])$ and $\operatorname{sign}(f(a)) \neq \operatorname{sign}(f(b))$ by the Intermediate Value Theorem we know we have a bracketed root on the interval $[a, b]$. Bisection Method: halve the interval while continuing to bracket the root.

Bisection (2)

For the bracket interval $[a, b]$ the midpoint is

$$
x_{m}=\frac{1}{2}(a+b)
$$

idea:
(1) split bracket in half
(2) select the bracket that has the root
(3) goto step 1

Bisection Algorithm

```
l import numpy as np
2 from scipy import optimize
3 import pprint
4
5 def bisection(f,al,b1,tol):
    a = al
    b = bl
    sfb = np.sign(f(b))
    k=1
    print(' k a b x_mid f(x_mid) width')
    while b - a > tol:
        x = (a+b)/2.
        y = f(x)
        sfx = np.sign(y)
        w = np.abs(b-a)
        print('%5d %10.6f %10.8f %10.8f %11.8f %11.8f' % (k,a,b,x,y,w))
        if sfx == 0.:
            a = x
            b = x
            break
        elif sfx == sfb:
            b = x
        else:
            a = x
        k=k+1
26
2 7
28 def f(x):
29 return x - x**(1./3.) - 2
30
31 if __name__ == "__main__":
32.bisection(f,3.,4.,1.e-3)
```


Bisection Example

Solve with bisection:
$x-x^{1 / 3}-2=0$ solution from Matlab:3.521379706804568

k	a	b	x mid	$\mathrm{f}(\mathrm{x}$ mid)	width
1	3.000000	4.00000000	3.50000000	-0.01829449	1.00000000
2	3.500000	4.0000000	3.75000000	0.19638375	0.50000000
3	3.50000	3.75000000	3.52500000	0.08884159	0.20000000
4	3.500000	3.62500000	3.56250000	0.03522131	0.12500000
5	3.500000	3.56250000	3.53125000	0.00845016	0.06250000
6	3.500000	3.53125000	3.51562500	-0.00492550	0.03125000
7	3.515625	3.53125000	3.52343750	0.0017650	0.01562500
8	3.515625	3.52343750	3.51953125	-0.00158221	0.00781250
9	3.519531	3.52343750	3.52148438	0.00008959	0.00390625
10	3.519531	3.52148438	3.52050781	-0.00074632	0.00195312

Analysis of Bisection

Let $\delta_{n}=x_{b_{n}}-x_{a_{n}}$ be the size of the bracketing interval $\left[x_{a_{n}}, x_{b_{n}}\right]$ with x_{n} the middle of the $n^{\text {th }}$ stage of bisection. If r is the bracketed root then

$$
\left|x_{n}-r\right| \leqslant \frac{1}{2} \delta_{n} \text { where }
$$

$$
\delta_{1}=b-a=\text { initial bracketing interval }
$$

$$
\delta_{2}=\frac{1}{2} \delta_{1}
$$

$$
\delta_{3}=\frac{1}{2} \delta_{2}=\frac{1}{4} \delta_{1}
$$

$$
\delta_{n}=\left(\frac{1}{2}\right)^{n-1} \delta_{1} \quad \text { thus }
$$

$$
\left|x_{n}-r\right| \leqslant\left(\frac{1}{3}\right)^{n} \delta_{1}
$$

Analysis of Bisection

$$
\frac{\delta_{n+1}}{\delta_{1}}=\left(\frac{1}{2}\right)^{n}=2^{-n} \quad \text { or } \quad n=\log _{2}\left(\frac{\delta_{1}}{\delta_{n+1}}\right)
$$

5	3.1×10^{-2}	7
10	9.8×10^{-4}	12
20	9.5×10^{-7}	22
30	9.3×10^{-10}	32
40	9.1×10^{-13}	42
50	8.9×10^{-16}	52

Remember the game Twenty questions?

Convergence Criteria

An automatic root-finding procedure needs to monitor progress toward the root and stop when current guess is close enough to the desired root.

- Convergence checking will avoid searching to unnecessary accuracy.
- Check how closeness of successive approximations

$$
\left|x_{k}-x_{k-1}\right|<\delta_{x}
$$

- Check how close $f(x)$ is to zero at the current guess.

$$
\left|f\left(x_{k}\right)\right|<\delta_{f}
$$

- Which one you use depends on the problem being solved

Convergence Criteria on x versus $f(x)$

Is x_{k} a sufficient approximation of a root at r ? What if $r=1$ and $x_{k}=100$?

Alternative view

We have two views for finding roots

- Find r such that $f(r)=0$
- Compute $r=f^{-1}(0)$

The two views give us two ways to determine errors.

Condition Number of Problem

Given a function $G: \mathbb{R} \rightarrow \mathbb{R}$,suppose we wish to compute $y=G(x)$. How sensitive is the solution to changes in x ? We can measure this sensitivity in two ways:

- Absolute Condition Number $=\lim _{h \rightarrow 0} \frac{|G(x+h)-G(x)|}{|h|}$
- Relative Condition Number $=\lim _{h \rightarrow 0} \frac{\frac{|G(x+h)-G(x)|}{|(x)|}}{\frac{\mid(x)}{|x|}}$

Condition numbers much greater than one mean that the problem is inherently sensitive.

Condition Number Example

Given the problem of finding a root of a function $f: \mathbb{R} \rightarrow \mathbb{R}$,consider the absolute condition number applied to the problem of computing $f^{-1}(0)$.

$$
\begin{aligned}
\text { Absolute Condition Number } & =\lim _{h \rightarrow 0} \frac{\left|f^{-1}(0+h)-f^{-1}(0)\right|}{|h|} \\
& =\left.\frac{d f^{-1}(y)}{d y}\right|_{y=0} \text { and from Calculus } \\
& =\frac{1}{\left.\frac{d f(x)}{d x}\right|_{x=r}}
\end{aligned}
$$

We conclude that the root finding problem is inherently sensitive to change if $\left|\frac{d f(r)}{d x}\right| \approx 0$.

Condition Number Example

Given the problem of finding a root of a function $f: \mathbb{R} \rightarrow \mathbb{R}$,consider the absolute condition number applied to the problem of computing $f(r)$ where r is a root of f.

$$
\begin{aligned}
\text { Absolute Condition Number } & =\lim _{h \rightarrow 0} \frac{|f(r+h)-f(r)|}{|h|} \\
& =\left.\frac{d f(x)}{d x}\right|_{x=r}
\end{aligned}
$$

We conclude that the root finding problem is inherently sensitive to change if $\left|\frac{d f(r)}{d x}\right| \gg 1$.

Convergence Criteria Compared

If $f^{\prime}(x)$ is small near the root, it is easy to satisfy tolerance on $f(x)$ for a large range of Δx.

If $f^{\prime}(x)$ is large near the root, it is possible to satisfy the tolerance on Δx when $|f(x)|$ is still large.

Convergence rate of a root finding iteration

- Let $e_{n}=x^{*}-x_{n}$ be the error.
- In general, a sequence is said to converge with rate if r is the largest real for which the limit below is finite.

$$
\lim _{n \rightarrow \infty} \frac{\left|e_{n+1}\right|}{\left|e_{n}\right|^{r}}=C
$$

Special Cases:

- If $r=1$ and $C=1$, then the rate is sublinear
- If $r=1$ and $C<1$, then the rate is linear
- If $r>1$ (i.e. $r=1$ and $C=0$), then the rate is superlinear
- If $r=2$ and $C>0$, then the rate is quadratic

Convergence rate of the bisection method

When the bisection method "converges" it can be shown that,
Bisection Method
The bisection method converges with rate $r=1$ and $C=0.5$.

Example

Convergence Rate

(c) $10^{-2}, 10^{-3}, 10^{-4}, 10^{-5} \ldots$
(2) $10^{-2}, 10^{-4}, 10^{-6}, 10^{-8} \ldots$
(3) $10^{-2}, 10^{-3}, 10^{-5}, 10^{-8} \ldots$
(4) $10^{-2}, 10^{-4}, 10^{-8}, 10^{-16} \ldots$
(5) $10^{-2}, 10^{-6}, 10^{-18}, \ldots$

Example

Convergence Rate

(C) $10^{-2}, 10^{-3}, 10^{-4}, 10^{-5} \ldots$ (linear with $C=10^{-1}$)
(2) $10^{-2}, 10^{-4}, 10^{-6}, 10^{-8} \ldots$ (linear with $C=10^{-2}$)
(3) $10^{-2}, 10^{-3}, 10^{-5}, 10^{-8} \ldots$ (superlinear, not quadratic)
(9) $10^{-2}, 10^{-4}, 10^{-8}, 10^{-16} \ldots$ (quadratic)
(5) $10^{-2}, 10^{-6}, 10^{-18}, \ldots$ (cubic)

- Linear: Adds equal number of digits of accuracy at each step
- Quadratic: Doubles the number of digits at each step

Performing Division

- Ever wondered how a computer process performs division?
- "Long" division requires lookup, subtraction, shifts
- Generates one digit and a time. Can we do better?

To answer this, we need to look at faster methods than bisection

Newton's Method

For a current guess x_{k}, use $f\left(x_{k}\right)$ and the slope $f^{\prime}\left(x_{k}\right)$ to predict where $f(x)$ crosses the x axis.

Newton's Method

Expand $f(x)$ in Taylor Series around x_{k}

$$
\begin{aligned}
f\left(x_{k}+\Delta x\right)=f\left(x_{k}\right) & +\left.\Delta x \frac{d f}{d x}\right|_{x_{k}} \\
& +\left.\frac{(\Delta x)^{2}}{2} \frac{d^{2} f}{d x^{2}}\right|_{x_{k}}+\ldots
\end{aligned}
$$

Substitute $\Delta x=x_{k+1}-x_{k}$ and neglect $2^{\text {nd }}$ order terms to get

$$
f\left(x_{k+1}\right) \approx f\left(x_{k}\right)+\left(x_{k+1}-x_{k}\right) f^{\prime}\left(x_{k}\right)
$$

where

$$
f^{\prime}\left(x_{k}\right)=\left.\frac{d f}{d x}\right|_{x_{k}}
$$

Newton's Method

Goal is to find x such that $f(x)=0$. Set $f\left(x_{k+1}\right)=0$ and solve for x_{k+1}

$$
0=f\left(x_{k}\right)+\left(x_{k+1}-x_{k}\right) f^{\prime}\left(x_{k}\right)
$$

or, solving for x_{k+1}

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

Newton's Method Algorithm

```
initialize: }\mp@subsup{x}{1}{}=
for }k=2,3,
    x}=\mp@subsup{x}{k-1}{}-f(\mp@subsup{x}{k-1}{})/\mp@subsup{f}{}{\prime}(\mp@subsup{x}{k-1}{}
    if converged, stop
end
```


Newton's Method Example

Solve:

$$
x-x^{1 / 3}-2=0
$$

First derivative is

$$
f^{\prime}(x)=1-\frac{1}{3} x^{-2 / 3}
$$

The iteration formula is

$$
x_{k+1}=x_{k}-\frac{x_{k}-x_{k}^{1 / 3}-2}{1-\frac{1}{3} x_{k}^{-2 / 3}}
$$

Newton's Method Example

```
limport numpy as np
2 from scipy import optimize
3 import pprint
4
5 def newton(f,fp, x,tol):
k k = 1
7 print(' k x_k fp(x_k) f(x_k)')
8 print('%5d %22.20f %11.8f %11.8g' % (k,x,fp(x),f(x)))
9 k = k + 1
10 while np.abs( f(x) ) > tol:
            x = x - f(x)/fp(x)
            print('%5d %22.20f %11.8f %11.8g' % (k,x,fp(x),f(x)))
            k = k + l
14
15
16 def f(x):
17 return x - x**(1./3.) - 2.
18
19 def fp(x):
20 return 1. - x**(-2./3.)/3.
21
22
23
24 if __name__ == "__main__":
25 newton(f,fp, 䘖,1.\overline{e-25)}
```


Newton's Method Example

$$
x_{k+1}=x_{k}-\frac{x_{k}-x_{k}^{1 / 3}-2}{1-\frac{1}{3} x_{k}^{-2 / 3}}
$$

The approximate true root $=3.52137970680457046412926$

k	$x-k$	$f p(x-k)$	$f\left(x_{-k}\right)$
1	3.00000000000000000000	0.83975005	-0.44224957
2	3.52664429313903271535	0.85612976	0.0045067918
3	3.52138014739732829739	0.85598641	$3.7714141 e-07$
4	3.52137970680457090822	0.85598640	$2.6645353 \mathrm{e}-15$
5	3.52137970680456779959	0.85598640	0

Conclusion

- Newton's method converges much more quickly than bisection
- Newton's method requires an analytical formula for $f^{\prime}(x)$
- The algorithm is simple as long as $f^{\prime}(x)$ is available.
- Iterations are not guaranteed to stay inside an ordinal bracket.

Divergence of Newton's Method

Since

$$
x_{k+1}=x_{k}-\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}
$$

the new guess, x_{k+1}, will be far from the old guess whenever $f^{\prime}\left(x_{k}\right) \approx 0$

Newton's Method: Convergence

Recall

Convergence of a method is said to be of order r if there is a constant C such that

$$
\lim _{k \rightarrow \infty} \frac{\left|e_{k+1}\right|}{\left|e_{k}\right|^{r}}=C
$$

If Newton's method converges then it is of order 2 (quadratic) when $f^{\prime}\left(x_{*}\right) \neq 0$. (assuming $f^{\prime \prime}$ is continuous) For ξ_{k} between x_{k} and x_{*}

$$
f\left(x_{*}\right)=f\left(x_{k}\right)+\left(x_{*}-x_{k}\right) f^{\prime}\left(x_{k}\right)+\frac{1}{2}\left(x_{*}-x_{k}\right)^{2} f^{\prime \prime}\left(\xi_{k}\right)=0
$$

So

$$
\frac{f\left(x_{k}\right)}{f^{\prime}\left(x_{k}\right)}+x_{*}-x_{k}+\frac{1}{2}\left(x_{*}-x_{k}\right)^{2} \frac{f^{\prime \prime}\left(\xi_{k}\right)}{f^{\prime}\left(x_{k}\right)}=0
$$

Then

$$
x_{*}-x_{k+1}+\frac{1}{2}\left(x_{*}-x_{k}\right)^{2} \frac{f^{\prime \prime}\left(\xi_{k}\right)}{f^{\prime}\left(x_{k}\right)}=0
$$

Thus

$$
\frac{\left|x_{*}-x_{k+1}\right|}{\left|x_{*}-x_{k}\right|^{2}}=\frac{1}{2}\left|\frac{f^{\prime \prime}\left(\xi_{k}\right)}{f^{\prime}\left(x_{k}\right)}\right| \rightarrow \frac{1}{2}\left|\frac{f^{\prime \prime}\left(x_{*}\right)}{f^{\prime}\left(x_{*}\right)}\right| \text { as } x_{k} \rightarrow x_{*}
$$

Reciprocal Approximation

- Consider the task of computing $1 / q$ for some q without using division.
- We can write this as: find the root x of $f(x)=1 /(x q)-1=0$.
- What is Newton's Method for this?
- $f^{\prime}(x)=-1 /\left(x^{2} q\right)$. Thus

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

or

$$
x_{n+1}=x_{n}-\left(\frac{1 /\left(x_{n} q\right)-1}{-1 /\left(x_{n}^{2} q\right)}\right)
$$

Reciprocal Approximation

- Consider the task of computing $1 / q$ for some q without using division.
- We can write this as: find the root x of $f(x)=1 /(x q)-1=0$.
- What is Newton's Method for this?
- $f^{\prime}(x)=-1 /\left(x^{2} q\right)$. Thus

$$
x_{n+1}=x_{n}-\frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

or

$$
\begin{gathered}
x_{n+1}=x_{n}-\left(\frac{1 /\left(x_{n} q\right)-1}{-1 /\left(x_{n}^{2} q\right)}\right) \frac{x_{n}^{2} q}{x_{n}^{2} q} \\
x_{n+1}=x_{n}+x_{n}-x_{n}^{2} q=2 x_{n}-x_{n}^{2} q=2 x_{n}-x_{n}^{2} q
\end{gathered}
$$

Example: Compute $1 / 3=0.01010101 \ldots$ binary

- Find the bracket:
- $1 / 2>1 / 3>1 / 4$
(1) $x_{1}=1 / 4$
(2) $x_{2}=2 x_{1}-x_{1}^{2} q=1 / 2-3 / 16=5 / 16=0.0101$ (binary)
(3) $x_{3}=2 \times 5 / 2^{4}-3 \times 25 / 2^{8}=(160-75) / 2^{8}=85 / 2^{8}=0.01010101$ (binary)
(9) $x_{4}=2 \times 85 / 2^{8}-3 \times 85^{2} / 2^{16}=21845 / 2^{16}=0.0101010101010101$ (binary)

In 3 steps, computed 16 bits in $1 / 3$
How many binary digits are computed in the next step?

Instructor Notes

- Modification of Newton's Method for root finding when $\frac{d f}{d x}(r o o t)=0$. Use the formula,

$$
x_{n+1}=x_{n}-m * \frac{f\left(x_{n}\right)}{f^{\prime}\left(x_{n}\right)}
$$

where m is the multiplicity of the root.

- or solve $0=g(x)=\frac{f(x)}{f^{\prime}(x)}$

