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What we’ll do:

Section 1: Refresher on Taylor Series
Section 2: Measuring Error and Counting the Cost of the Method

I big-O(continuous function)
I big-O (discrete function)
I Order of convergence

Section 3: Taylor Series in Higher Dimensions
Section 4: Condition Number of a Mathematical Model of a Problem
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Section 1: Taylor Series

All we can ever do is add and multiply.
We can’t directly evaluate ex, cos(x),

√
x

What to do? Taylor Series approximation

Taylor
The Taylor series expansion of f (x) at the point x = c is given by

f (x) = f (c) + f (1)(c)(x − c) +
f (2)(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n + . . .

=

∞∑
k=0

f (k)(c)
k!

(x − c)k
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Taylor Example

Taylor Series
The Taylor series expansion of f (x) about the point x = c is given by

f (x) = f (c) + f (1)(c)(x − c) +
f (2)(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n + . . .

=

∞∑
k=0

f (k)(c)
k!

(x − c)k

Example (ex)
We know e0 = 1, so expand about c = 0 to get

f (x) = ex = 1 + 1 · (x − 0) +
1

2!
· 1 · (x − 0)2 + . . .

= 1 + x +
x2

2!
+

x3

3!
+ . . .
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Taylor Approximation

So

e2 = 1 + 2 +
22

2!
+

23

3!
+ . . .

But we can’t evaluate an infinite series, so we truncate...

Taylor Series Polynomial Approximation
The Taylor Polynomial of degree n for the function f (x) about the point c is

pn(x) =
n∑

k=0

f (k)(c)
k!

(x − c)k

Example (ex)
In the case of the exponential

ex ≈ pn(x) = 1 + x +
x2

2!
+ · · ·+ xn

n!
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Taylor Approximation

Evaluate e2:

1 import math

2 import matplotlib.pyplot as plt

3 import numpy

4 x=2.0

5 pn =0.0

6 error=[]

7 for j in range(0,26):

8 pn = pn + (x**j)/math.factorial(j)

9 error.append(math.exp(2.0)-pn)

10

11 j = numpy.arange(0,26)

12 plt.semilogy(j,error)
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Taylor Approximation

Evaluate e2:
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Taylor Approximation Recap

Infinite Taylor Series Expansion (exact)

f (x) = f (c) + f (1)(c)(x − c) +
f (2)(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n + . . .

Finite Taylor Series Expansion (exact)

f (x) = f (c) + f (1)(c)(x − c) +
f (2)(c)

2!
(x − c)2 + . . .

+
f (n)(c)

n!
(x − c)n +

f (n+1)(ξ)

(n + 1)!
(x − c)(n+1)

where ξ lies between x and c but we don’t know exactly where.

Finite Taylor Series Approximation

f (x) ≈ f (c) + (x − c)f (1)(c) +
f (2)(c)

2!
(x − c)2 + · · ·+ f (n)(c)

n!
(x − c)n
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Taylor Approximation Error

How accurate is the Taylor series polynomial approximation?
The n terms of the approximation are simply the first n terms of the exact
expansion:

ex = 1 + x +
x2

2!︸         ︷︷         ︸
p2 approximation to ex

+
x3

3!
+ . . .︸      ︷︷      ︸

truncation error

(1)

So the function f (x) can be written as the Taylor Series approximation
plus an error (truncation) term:

f (x) = pn(x) + en(x)

where

en(x) =
(x − c)n+1

(n + 1)!
f (n+1)(ξ(x))
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Section 2: Measuring Error and Counting the Cost of
the Method

Goal: Determine how the error en(x) = |f (x) − pn(x)| behaves relative to x
near c (for fixed f and n).
Goal: Determine how the error en(x) = |f (x) − pn(x)| behaves relative to n
(for a fixed f and x).
Goal: Determine how the cost of computing pn(x) behaves relative to n
(for a fixed f and x).
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Goal: Determine how the error en(x) = |f (x) − pn(x)|
behaves relative to x near c (for fixed f and n)

Big ”O” (continuous functions)
We write the error as

en(x) =
f (n+1)(ξ)

(n + 1)!
(x − c)n+1

= O
(
(x − c)n+1)

since we assume the (n + 1)th derivative is bounded on the interval [a, b].

Often, we let h = x − c and we have

f (x) = pn(x) + O(hn+1)
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Big ”O” (continuous functions)

We write that g(h) ∈ O(hr) when

|g(h)| 6 C|hr| for some C as h→ 0
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Goal: Determine how the error en(x) = |f (x) − pn(x)|
behaves relative to x near c (for fixed f and n)

For the Taylor series of f (x) = 1
1−x about c = 0 we note that since the function

can be written as a geometric series,

1
1 − x

= 1 + x + x2 + · · ·+ xn +

∞∑
k=n+1

xk

we can (in this specific problem) obtain an explicit formula for the error
function,

|en(x)| =
∞∑

k=n+1

xk =

∞∑
k̃=0

xk̃+n+1 = xn+1
∞∑

k̃=0

xk̃

=
xn+1

1 − x
for a fixed x ∈ (−1, 1)

= O(hn+1) where h = x − c = x − 0 = x
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Goal: Determine how the error en(x) = |f (x) − pn(x)|
behaves relative to n (for a fixed f and x)

Taylor Series for f (x) = 1
1−x

From the previous slide we computed the error exactly as,

xn+1

1 − x
for a fixed x ∈ (−1, 1)

How many terms do I need to make sure my error is less than
2× 10−8 for x = 1/2?

|en(x)| = 2 · (1/2)n+1 < 2× 10−8

n + 1 >
−8

log10(1/2)
≈ 26.6 or

n > 26
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Goal: Determine how the error en(x) = |f (x) − pn(x)|
behaves relative to n (for a fixed f and x)

If we use another method for computing f (x) how can we compare the
methods order of convergence for a fixed value of x?

T. Gambill (UIUC) CS 357 January 25, 2011 15 / 57



Order of Convergence

Definition
If

lim
n→∞ an = L

then the Order of Convergence of the sequence {an} is the largest positive
number r such that

lim
n→∞ |an+1 − L|

|an − L|r
= C <∞

For r = 1 and C = 1 the convergence is said to be sub-linear.
For r = 1 and 0 < C < 1 the convergence is said to be linear.
For r = 1 and C = 0 the convergence is said to be super
For r > 1 the convergence is said to be superlinear.
For r = 2 the convergence is said to be quadratic.
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Goal: Determine how the error en(x) = |f (x) − pn(x)|
behaves relative to n (for a fixed f and x)

Taylor Series for f (x) = 1
1−x

From the previous slide we computed the error exactly as,

xn+1

1 − x
for a fixed x ∈ (−1, 1)

Order of convergence
We know that limn→∞ pn(x) = L = 1

1−x for a fixed x ∈ (−1, 1). To find the order
of convergence we compute,

|pn+1 − L|
|pn − L|r

=
|en+1(x)|
|en(x)|r

=
| x

n+2

1−x |

| x
n+1

1−x |
r
= |(1 − x)(r−1)x((n+1)(1−r)+1)|
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Goal: Determine how the error en(x) = |f (x) − pn(x)|
behaves relative to n (for a fixed f and x)

Order of convergence of the Taylor Series for f (x) = 1
1−x

Using the result from the previous slide, we need to find the largest value of r
such that the following limit is finite.

lim
n→+∞ |(1 − x)(r−1)x((n+1)(1−r)+1)|

Since x ∈ (−1, 1) if r > 1 then |x((n+1)(1−r)+1)|→ +∞ as n→ +∞.
When r = 1 we have the result that,

lim
n→+∞ |(1 − x)(r−1)x((n+1)(1−r)+1)| = lim

n→+∞ |x| = |x|

Therefore, for x ∈ (−1, 1)andX , 0 the order of convergence is 1 and the
convergence is linear.
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Goal: Determine how the cost of computing pn(x)
behaves relative to n (for a fixed f and x)

For example, how do we evaluate

f (x) = 5x3 + 3x2 + 10x + 8

at the point 1/3?
This would require 5 multiplications and 3 additions.
If we regroup as

f (x) = 8 + x(10 + x(3 + x(5)))

then we have 3 multiplications and 3 additions.
This is Nested Multiplication or Synthetic Division or Horner’s Method
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Nested Multiplication

To evaluate
pn(x) = a0 + a1x + a2x2 + · · ·+ anxn

rewrite as

pn(x) = a0 + x(a1 + x(a2 + · · ·+ x(an−1 + x(an)) . . . ))

A polynomial of degree n requires no more than n multiplications and n
additions. That is, the number of floating point operations is O(n).

Listing 1: nested mult
1 p = a[n]
2 for i in range(n-1,-1,-1):

3 p = a[i] + x * p
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Big ”O” (discrete functions)

How to measure the impact of n on algorithmic cost?

O(·)
Let g(n) be a function of n. Then define

O(g(n)) = {f (n) |∃c, n0 > 0 : 0 6 f (n) 6 cg(n), ∀n > n0}

That is, f (n) ∈ O(g(n)) if there is a constant c such that 0 6 f (n) 6 cg(n) is
satisfied.

assume non-negative functions (otherwise add | · |) to the definitions
f (n) ∈ O(g(n)) represents an asymptotic upper bound on f (n) up to a
constant
example: f (n) = 3

√
n + 2 log n + 8n + 85n2 ∈ O(n2)
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Big-O (Omicron)
asymptotic upper bound

O(·)
Let g(n) be a function of n. Then define

O(g(n)) = {f (n) |∃c, n0 > 0 : 0 6 f (n) 6 cg(n), ∀n > n0}

That is, f (n) ∈ O(g(n)) if there is a constant c such that 0 6 f (n) 6 cg(n) is
satisfied.
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Section 3: Taylor Series in Higher Dimensions

Definition Multi-Index Notation
Denote k = (k1, k2, · · · , kn) and x = (x1, x2, · · · , xn) then we will use the
following notation,

|k| = k1 + k2 + · · ·+ kn

k! = k1!k2! · · · kn!
xk = xk1

1 xk2
2 · · · xkn

n

∂k

∂xk =
∂k1

∂xk1
1

∂k2

∂xk2
2

· · · ∂
kn

∂xkn
n
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Further Classification of Functions

Definition
Given a function,

f = Rn → R

then f is called Cm(Rn) if
∂kf (x1, x2, · · · , xn)

∂xk1
1 ∂xk2

2 · · ·∂xkn
n

(where k1 + k2 + · · ·+ kn = k) is a

continuous function for all values m > k > 0. For m = 0 we write C(Rn) which
denotes the set of all continuous functions.
If f is Cm(Rn) for all m > 0 then f is called C∞(Rn).

Example
∂2(x2y)
∂x∂y

=
∂2(x2y)
∂y∂x

= 2x.
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Taylor Series in Higher Dimensions

Taylor Series (using multi-index notation)
If f : Rn → R, f is Cm+1(Rn) and x, x ∈ Rn then we can approximate the
function f by the formula:

f (x) =
m∑

|k|=0

1
k!
∂kf (c)
∂xk (x − c)k + Rm+1(x, c)

where Rm+1(x, c) is the remainder.
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Taylor Series Example

f (x, y) = x2 + y2 − cos (x)
f : R2 → R and we will put c = (0, 0) and x = (x, y). Note that f ∈ C∞(R2).
Find the Taylor Series terms for |k| = 0, 1, 2.
The partial derivatives of f are:

∂f
∂x

= 2x + sin (x)

∂f
∂y

= 2y

∂2f
∂x2 = 2 + cos (x)

∂2f
∂x∂y

= 0

∂2f
∂y2 = 2
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Taylor Series Example (continued)

f (x, y) = x2 + y2 − cos (x)
For |k| = 0 there is only one term in the series:

1
0!0!

∂0

∂x0

(
∂0f (c)
∂y0

)
(x − 0)0(y − 0)0 = f (c) = −1

For |k| = 1 there are two terms in the series:

1
1!0!

∂1f (c)
∂x1 (x − 0)1(y − 0)0 +

1
0!1!

∂1f (c)
∂y1 (x − 0)0(y − 0)1 = 0

For |k| = 2 there are three terms in the series:

1
2!0!

∂2f (c)
∂x2 (x − 0)2(y − 0)0 +

1
1!1!

∂1

∂x1

(
∂1f (c)
∂y1

)
(x − 0)1(y − 0)1+

1
0!2!

∂2f (c)
∂y2 (x − 0)0(y − 0)2 =

3
2

x2 + y2
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Taylor Series Example (continued)

Thus we have the truncated approximation,

f (x, y) = x2 + y2 − cos (x)

f (x, y) = x2 + y2 − cos (x) ≈ −1 +
3
2

x2 + y2
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Taylor Series Example

The general formula for f : R2 → R
For |k| = 0, 1, 2 where c = (x0, y0):

f (x, y) ≈ f (c) +
∂f (c)
∂x

(x − x0) +
∂f (c)
∂y

(y − y0) +

1
2!
∂2f (c)
∂x2 (x − x0)

2 +

(
∂2f (c)
∂x∂y

)
(x − x0)(y − y0) +

1
2!
∂2f (c)
∂y2 (y − y0)

2
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Taylor Series Example

The vector form of the general formula
For |k| = 0, 1, 2 where c = (x0, y0):

f ≈ f (c) + [∇f (c)]T ∗ (x − c) +
1
2!
(x − c)T ∗H(f (c)) ∗ (x − c)

where x, c, x − c are column vectors, the T represents the tranpose operator,
the column vector ∇f (c) represents the gradient of f (x) and finally the
Hessian matrix,

H(f (c)) =


∂2f (c)
∂x2

∂2f (c)
∂x∂y

∂2f (c)
∂y∂x

∂2f (c)
∂y2


Properties of the above formula

True for f : Rn → R.

For f : Rn → R the Hessian has size nxn, H =
[
Hij
]

where Hij =
∂2f (c)
∂xi∂xj

.
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Test your understanding

f (x, y) = x2 + y2 + cos (x)
Does f (x, y) have a maxima or minima?
Set the ”derivative” equal to zero to find critical points.

0 = ∇f =

 ∂f
∂x
∂f
∂y

 =

[
2x − sin (x)

2y

]

has the solution x = 0, y = 0 thus c = [0, 0]T is a critical point.

Check the sign of the ”second derivative”.

”Second derivative” test
Given that c is a critical point of f , then

If xT ∗H ∗ x < 0, x , 0 H is negative-definite(Maxima)
If xT ∗H ∗ x > 0, x , 0 H is positive-definite(Minima)
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Test your understanding (continued)

”Second derivative” test (continued)
For x = [x, y]T,

xT ∗H ∗ x = xT ∗


∂2f (c)
∂x2

∂2f (c)
∂x∂y

∂2f (c)
∂y∂x

∂2f (c)
∂y2

 ∗ x (2)

= xT ∗
[

1 0
0 2

]
∗ x (3)

= x2 + 2y2 > 0 for x , 0 (4)
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Section 4: Condition Number of Mathematical Model
of a Problem

Given a function G : R→ R that represents a mathematical model where the
computation y = G(x) solves a specific problem we ask... How sensitive is the
solution to changes in x? We can measure this sensitivity in two ways:

Absolute Condition Number = limh→0
|G(x+h)−G(x)|

|h|

Relative Condition Number = limh→0

|G(x+h)−G(x)|
|G(x)|

|h|
|x|

Condition numbers much greater than one mean that the problem is inherently
sensitive. We call the problem/model ill-conditioned. Even using a ”perfect”
algorithm” (no truncation errors) and a ”perfect” implementation (no-roundoff
errors) can produced inexact results for an ill-conditioned problem/model
(since slight errors in input data can produce huge errors in the results).

A specific problem may be modelled mathematically in different ways. The
condition number for each model of the same problem may not be the same
and may vary to a great degree
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Inherent errors in computations

A problem with subtracting nearly equal values
Problem: Compute the sum x + y for x ∈ R, y ∈ R. What is the condition
number of this simple problem?
We can simplify this problem further by using the following model. Compute
G(x) = x + y for a fixed y.

Relative Condition Number =

∣∣∣∣∣x
dG(x)

dx

G(x)

∣∣∣∣∣
=

|x|
|x + y|

Problem with cancelation errors
If |x + y| is small then the relative condition number in computing x + y will be
large. This happens when x ≈ −y. In particular, when subtracting floating
point numbers with finite precision catastrophic cancelation can occur. We
will discuss this later.
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Inherent errors in computations

Multiplication errors
Problem: Compute the product x ∗ y for x ∈ R, y ∈ R. What is the condition
number of this simple problem?
We can simplify this problem further by using the following model. Compute
G(x) = x ∗ y for a fixed y.

Relative Condition Number =

∣∣∣∣∣x
dG(x)

dx

G(x)

∣∣∣∣∣
=

|x ∗ y|
|x ∗ y|

, x ∗ y , 0

= 1

No problem with multiplication errors
The relative condition number is just one.
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Inherent errors in computations

Division errors
Problem: Compute the product y

x for x ∈ R, x , 0, y ∈ R. What is the condition
number of this simple problem?
We can simplify this problem further by using the following model. Compute
G(x) = y

x for a fixed y.

Relative Condition Number =

∣∣∣∣∣x
dG(x)

dx

G(x)

∣∣∣∣∣
=

|x ∗ −y
x2 |

|
y
x |

, x ∗ y , 0

= 1

No problem with division errors
The relative condition number is just one.
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Computing e−20, a well conditioned problem but
unstable algorithm

Compute the condition number
Problem: Compute the value of e−20. What is the condition number of this
problem? Use G(x) = ex.
The condition number can be computed as follows.

Relative Condition Number =

∣∣∣∣∣x
dG(x)

dx

G(x)

∣∣∣∣∣
=

|x ∗ ex|

|ex|

= |x| = 20 when x = 20

The value 20 is not large so the problem is well conditioned.
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Computing e−20, a well conditioned problem but
unstable algorithm

Use a Taylor Series expansion of ex as our method to solve the problem.

1 def myexp(x):

2 y,newy,term,k = -1.,1.,1,0

3 while newy != y:

4 k = k+1

5 term = (term * x)/k

6 y = newy

7 newy = y + term

8 return newy

Large relative error
Python gives the value of exp(−20) = 2.061153622438558e − 09 but our code
gives myexp(−20) = 5.621884472130418e − 09.
Why is the relative error not small when the problem is well conditioned? The
answer is that the algorithm is not stable.
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Stability

Suppose that we want to solve the problem y = G(x) given both G : R→ R
and x ∈ R. However, our algorithm for this problem suffers from roundoff
and/or truncation errors so we actually compute an approximation y + ∆y.
Define the function Ĝ : R→ R as Ĝ(x) = y + ∆y.
Assuming that G is continuous then if ∆y is small enough there will be a value
x + ∆x near x such that G(x + ∆x) = y + ∆y (Intermediate Value Theorem).
Actually there may be more than one value of ∆x that produces this equality
so we will choose the one with the smallest value of |∆x|.

x
G- y = G(x)

x + ∆x

backward error

G- y + ∆y =

forward error

Ĝ

-

Ĝ(x) = G(x + ∆x)
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Stability
Using the diagram below we can find a formula for the approximate value of
the relative error.

Relative Condition Number ≈

∣∣∣ (G(x+∆x)−G(x))
G(x)

∣∣∣∣∣∆x
x

∣∣
=

∣∣∣∆y
y

∣∣∣∣∣∆x
x

∣∣ = relative forward error
relative backward error

Relative Condition Number ∗
∣∣∣∣∆x

x

∣∣∣∣ ≈ ∣∣∣∣∆y
y

∣∣∣∣
x

G- y = G(x)

x + ∆x

backward error

G- y + ∆y =

forward error

Ĝ

-

Ĝ(x) = G(x + ∆x)
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Stability

Definition of Stability
An algorithm is stable (backward stable) if the relative backward error

∣∣∆x
x

∣∣ is
small, otherwise the algorithm is unstable.∣∣∣∆y

y

∣∣∣ ≈ Relative Condition Number ∗
∣∣∆x

x

∣∣
The approximation above shows that if the condition number of the problem is
small and the algorithm is stable then the solution the algorithm produces is
accurate.

x
G- y = G(x)

x + ∆x

backward error

G- y + ∆y =

forward error

Ĝ

-

Ĝ(x) = G(x + ∆x)
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Computing e−20 a well conditioned problem but with
an unstable algorithm
Why then is the following algorithm unstable?

1 import math

2 def myexp(x):

3 y = -1.

4 newy = 1

5 term = 1

6 k = 0

7 while newy != y:

8 k = k+1

9 term = (term * x)/k

10 y = newy

11 newy = y + term

12 return newy

Since we showed the the problem was well conditioned, if the algorithm were
stable then the relative error in the solution would have been small.
Note that we can find a stable algorithm to compute e−20 by rewriting this
expression as 1

e20 and using a Taylor series for e20. Why does this work when
using a Taylor Series for e−20 does not?
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Floating Point Arithmetic

Problem: The set of representable machine numbers is FINITE.
So not all math operations are well defined!
Basic algebra breaks down in floating point arithmetic

floating point addition is not associative

a + (b + c) , (a + b) + c

Example

(1.0 + 2−53) + 2−53 , 1.0 + (2−53 + 2−53)
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Floating Point Arithmetic

Rule 1. x ∈ R, fl(x) not subnormal

fl(x) = x(1 + δ), where |δ| 6 µ

Rule 2. x, y are both IEEE floating point numbers
For all operations � (one of +,−, ∗, /)

fl(x� y) = (x� y)(1 + δ), where |δ| 6 µ

Rule 3. x, y are both IEEE floating point numbers
For +, ∗ operations

fl(x� y) = fl(y� x)

There were many discussions on what conditions/rules should be satisfied by
floating point arithmetic. The IEEE standard is a set of standards adopted by
many CPU manufacturers.
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Errors in Floating Point Arithmetic

Consider the sum of 3 numbers: y = a + b + c where a, b, c are machine
(normalized) representable numbers.

Done as fl(fl(a + b) + c)

η = fl(a + b) = (a + b)(1 + δ1)

y1 = fl(η+ c) = (η+ c)(1 + δ2)

= [(a + b)(1 + δ1) + c] (1 + δ2)

= [(a + b + c) + (a + b)δ1)] (1 + δ2)

= (a + b + c)
[

1 +
a + b

a + b + c
δ1(1 + δ2) + δ2

]
So disregarding the high order term δ1δ2

fl(fl(a + b) + c) = (a + b + c)(1 + δ3) with δ3 ≈
a + b

a + b + c
δ1 + δ2
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Floating Point Arithmetic

If we redid the computation as y2 = fl(a + fl(b + c)) we would find

fl(a + fl(b + c)) = (a + b + c)(1 + δ4) with δ4 ≈
b + c

a + b + c
δ1 + δ2

Main conclusion:

The first error is amplified by the factor (a + b)/y in the first case and (b + c)/y
in the second case.

In order to sum n numbers more accurately, it is better to start with the small
numbers first. [However, sorting before adding is usually not worth the cost!]
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Loss of Significance

Adding c = a + b will result in a large error if
a� b
a� b

Let

a = x.xxx · · · × 100

b = y.yyy · · · × 10−8

Then

finite precision︷                       ︸︸                       ︷
x.xxx xxxx xxxx xxxx

+ 0.000 0000 yyyy yyyy yyyy yyyy
= x.xxx xxxx zzzz zzzz ???? ????︸         ︷︷         ︸

lost precision
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Catastrophic Cancellation

Subtracting c = a − b will result in large error if a ≈ b. For example

a = x.xxxx xxxx xxx1
lost︷    ︸︸    ︷

ssss . . .

b = x.xxxx xxxx xxx0

lost︷   ︸︸   ︷
tttt . . .

Then

finite precision︷                ︸︸                ︷
x.xxx xxxx xxx1

+ x.xxx xxxx xxx0
= 0.000 0000 0001 ???? ????︸         ︷︷         ︸

lost precision
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Summary

addition: c = a + b if a� b or a� b
subtraction: c = a − b if a ≈ b
catastrophic: caused by a single operation, not by an accumulation of
errors
can often be fixed by mathematical rearrangement
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Cancellation

So what to do? Mainly rearrangement.

f (x) =
√

x2 + 1 − 1

Problem at x ≈ 0.

One type of fix:

f (x) =
(√

x2 + 1 − 1
)( √x2 + 1 + 1√

x2 + 1 + 1

)

=
x2

√
x2 + 1 + 1

no subtraction!
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Cancellation

Compute the following with x = 1.2e − 5.

f (x) =
(1 − cos (x))

x2

At x = 1.2e − 5 we get f (x) = 0.499999732974901.

One type of fix:

f (x) = 0.5
(

sin (x/2)
x/2

)2

which gives, f (x) = 0.499999999994000 again no subtraction!
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Cancellation Example

We want to plot the function y = (x − 2)9, x ∈ [1.95, 2.05]

1 import numpy as np

2 import numpy.polynomial.polynomial as ply

3 import matplotlib.pyplot as plt

4

5 # plot y = (x-2)**9 in red

6 x = np.linspace(1.95,2.05, 1000)

7 plt.plot(x,(x-2)**9,’r’)

8

9 # plot p = x**9-18x**8+144x**7-672x**6+2016x**5-4032x**4+5376x

**3-4608x**2+2304x-512 in blue

10 roots = 2 * np.ones(9)

11 p = ply.polyfromroots(roots)

12 #coefficients are in reverse order for polyval

13 p = p[::-1]

14 plt.plot(x, np.polyval(p,x),’b’)

15

16 plt.show()

(see plot on next slide)
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Cancellation Example
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Floating Point Arithmetic
Roundoff errors and floating-point arithmetic

Example
Roots of the equation

x2 + 2px − q = 0

Assume p > 0 and p >> q and we want the root with smallest absolute value:

y = −p +
√

p2 + q =
q

p +
√

p2 + q
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Floating Point Arithmetic Example 1
Where is the cancellation error?

1 >>> import math

2 >>> p = 1000

3 >>> q = 1

4 >>> y = -p + math.sqrt(p**2+q)

5 >>> y

6 0.0004999998750463419

7 >>>

8 >>> y2 = q/(p+math.sqrt(p**2+q))

9 >>> y2

10 0.0004999998750000625

11 >>>

12 >>> x = y

13 >>> x**2+2*p*x-q

14 9.255884947378945e-11

15 >>> x = y2

16 >>> x**2+2*p*x-q

17 0.0

T. Gambill (UIUC) CS 357 January 25, 2011 55 / 57



Floating Point Arithmetic Example 2
Where is the cancellation error?
Consider now the case when

p = −(1 + δ/2) and q = −(1 + δ)

The exact roots are 1 + δ and 1. Take δ = 1.E − 08 and use Python:

1 >>> d = 1.0e-8

2 >>> p = -(1+d/2)

3 >>> p

4 -1.000000005

5 >>> q = -(1+d)

6 >>> q

7 -1.00000001

8 >>> x = -p-math.sqrt(p**2+q)

9 >>> x

10 1.000000005

11 >>> y = -p+math.sqrt(p**2+q)

12 >>> y

13 1.000000005
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Instructor Notes

The Euler formula eiθ needs to be included if DFT is to be included in
future notes.
A more general definition of a ”problem” (as opposed to computing
y = G(x)) is to solve G(x, d) = 0 for x ∈ Rn where the data d ∈ Rm but this
involves discussing the matrix norm and partial derivatives.
Exponential Convergence

|en| 6 C−2n
for a constant C > 1
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