Lecture 1
 Introduction to Numerical Methods

T. Gambill

Department of Computer Science University of Illinois at Urbana-Champaign

June 16, 2014

Course Info

http://courses.engr.illinois.edu/cs357/su2014/

- Book: Numerical Methods Design, Analysis, and Computer Implementation of Algorithms, by Anne Greenbaum \& Timothy P. Chartier

Contact Information:

- Office: 2209 SC
- Office Hour: 1:00-2:00 PM Monday or by appointment
- email: gambill AT illinois DOT edu
- TA:

Sweta Yamini Seethamaraju email: ta1cs357 AT cs DOT illinois DOT edu

- Office Hour: tbd
- Office Hour Location: 209 Siebel Center

Assessment

http://courses.engr.illinois.edu/cs357/su2013/
Compass quizzes 150 points maximum

MPs
Midterm Exam
Final Exam

150 points maximum
150 points 250 points

Homework:

- no dropped scores
- May discuss MPs with TAs or other students, but do not copy!
- copied partial solutions is still copying
- see departmental policy re: cheating (
https://agora.cs.illinois.edu/display/undergradProg/Honor+Code)

Finally...

http://courses.engr.illinois.edu/cs357/su2013/

Schedule and Notes:

- Final exam is on Friday August $8^{\text {th }}$ time and location: TBA Questions?

Topics

- Section 1: What is Numerical Analysis / Numerical Methods?
- Section 2: Numbers
- Section 3: IEEE754
- Section 4: Errors-Data, Roundoff,Truncation,machine epsilon $\left(\epsilon_{m}\right)$,unit roundoff(μ)
- Section 5: Operations on Numbers
- Section 6: Functions

Section 1: What is Numerical Analysis / Numerical Methods?

Definition

Numerical Analysis - The study of algorithms (methods) for problems involving quantities that take on continuous (as opposed to discrete) values.

Numerical Calculation vs. Symbolic Calculation

- Numerical Calculation: involve numbers directly
- manipulate numbers to produce a numerical result
- Symbolic Calculation: symbols represent numbers
- manipulate symbols according to mathematical rules to produce a symbolic result

Example (numerical)

$$
\frac{(17.36)^{2}-1}{17.36+1}=16.36
$$

Example (symbolic)

$$
\frac{x^{2}-1}{x+1}=x-1
$$

Analytic Solution vs. Numerical Solution

- Analytic Solution (a.k.a. symbolic): The exact numerical or symbolic representation of the solution
- may use special characters such as π, e, or tan (83)
- Numerical Solution: The computational representation of the solution
- entirely numerical

Example (analytic)
 $\frac{1}{4}$ $\frac{1}{3}$ π $\tan (83)$

Numerical Computation and Approximation

- Numerical Approximation is needed to carry out the steps in the numerical calculation. The overall process is a numerical computation.

Example (symbolic computation, numerical solution)

$$
\frac{1}{2}+\frac{1}{3}+\frac{1}{4}-1=\frac{1}{12}=0.083333333 \ldots
$$

Example (numerical computation, numerical approximation)

$$
0.500+0.333+0.250-1.000=0.083
$$

Method vs. Algorithm vs. Implementation

- Method: a general (mathematical) framework describing the solution process
- Algorithm: a detailed description of executing the method
- Implementation: a particular instantiation of the algorithm
- Is it a "good" method?
- Is it a robust (stable) algorithm?
- Is it a fast implementation?

The Big Theme

Accuracy
Cost

Numerical Analysis

Definition (Trefethen)

Study of algorithms for the problems of continuous mathematics
We've been doing this since Calculus (and before!)

- Riemann sum for calculating a definite integral
- Newton's Method
- Taylor's Series expansion + truncation

History: Numerical Algorithms

- date to 1650 BCE: The Rhind Papyrus of ancient Egypt contains 85 problems; many use numerical algorithms (T. Chartier, Davidson)

- Approximates π with $(8 / 9)^{2} * 4 \approx 3.1605$

History: Archimedes

- 287-212BC developed the "Method of Exhaustion"
- Method for determining π
- find the length of the permieter of a polygon inscribed inside a circle of radius $1 / 2$
- find the permiter of a polygon circumscribed outside a circle of radius $1 / 2$
- the value of π is between these two lengths

History: Method of Exhaustion

- A circle is not a polygon
- A circle is a polygon with an infinite number of sides
- $C_{n}=$ circumference of an n-sided polygon inscribed in a circle of radius $1 / 2$
- $\lim _{n \rightarrow \infty}=\pi$
- Archimedes deterimined

$$
\begin{gathered}
\frac{223}{71}<\pi<\frac{22}{7} \\
3.1408<\pi<3.1429
\end{gathered}
$$

- two places of accuracy....
- http://www.pbs.org/wgbh/nova/archimedes/pi.html

History: Method of Machin

- Around 1700, John Machin discovered the trig identity

$$
\pi=16 \arctan \left(\frac{1}{5}\right)-4 \arctan \left(\frac{1}{239}\right)
$$

- Led to calculation of the first 100 digits of π
- Uses the Taylor series of arctan in the algorithm

$$
\arctan (x)=x-\frac{x^{3}}{3}+\frac{x^{5}}{5}-\frac{x^{7}}{7} \ldots
$$

- Used until 1973 to find the first Million digits

Big Questions

- How algorithms work and how they fail
- Why algorithms work and why they fail
- Connects mathematics and computer science
- Need mathematical theory, computer programming, and scientific inquiry

Numerical Analysis

A Numerical Analyst needs

- computational knowledge (e.g. programming skills)
- understanding of the application (physical intuition for validation)
- mathematical ability to construct and meaningful algorithm

Numerical Analysis

Numerical focus:
Approximation An approximate solution is sought. How close is this to the desired solution?
Efficiency How fast and cheap (memory) can we compute a solution?
Stability Is the solution sensitive to small variations in the problem setup?
Error What is the role of finite precision of our computers?

Numerical Analysis

Why?

- Numerical methods improve scientific simulation
- Some disasters attributable to bad numerical computing (Douglas Arnold)
- The Patriot Missile failure, in Dharan, Saudi Arabia, on February 25, 1991 which resulted in 28 deaths, is ultimately attributable to poor handling of rounding errors.
- The explosion of the Ariane 5 rocket just after lift-off on its maiden voyage off French Guiana, on June 4, 1996, was ultimately the consequence of a simple overflow.
- The sinking of the Sleipner A offshore platform in Gandsfjorden near Stavanger, Norway, on August 23, 1991, resulted in a loss of nearly one billion dollars. It was found to be the result of inaccurate finite element analysis.

Section 2: Numbers

Sets of Numbers

- Natural Numbers $=\mathbb{N}=\{1,2,3, \ldots\}$
- Integers $=\mathbb{Z}=\{0, \pm 1, \pm 2, \pm 3, \ldots\}$
- Rationals $=\mathbb{Q}=\{a / b \mid a \in \mathbb{Z}, b \in \mathbb{Z}, b \neq 0\}$
- Reals $=\mathbb{R}=\left\{ \pm d_{n} d_{n-1} \ldots d_{2} d_{1} . d_{-1} d_{-2} \ldots \mid n \in \mathbb{N}\right.$ and $d_{j} \in\{0,1,2 \ldots, 9\}, j=$ $n, n-1, n-2, \ldots, 1,-1,-2, \ldots\}$
- n-tuples of Reals $=\mathbb{R}^{n}=\left\{\left(r_{1}, r_{2}, \ldots, r_{n}\right) \mid r_{i} \in \mathbb{R}\right.$ and $\left.n \in \mathbb{N}\right\}$
- Complex Numbers $=\mathbb{C}=\left\{(a, b)=a+b i \mid a \in \mathbb{R}, b \in \mathbb{R}, \quad i^{2}=-1\right\}$
- Extended Reals $=\overline{\mathbb{R}}=\mathbb{R} \cup \pm \infty$.
- Interval Numbers $=\mathbb{I} \mathbb{R}=\{[a, b] \mid a \leqslant b, a \in \mathbb{R}, b \in \mathbb{R}\}$

Section 3: Floating Point Numbers, Precision

Computer Representation of Real Numbers

- Normalized Floating Point Numbers
$F(\beta, t, L, U)=$
$\left\{ \pm \beta^{e}\left(d_{0} \cdot d_{1} d_{2} \ldots d_{t-1}\right) \mid 0 \leqslant d_{i} \leqslant \beta-1, i=0, \ldots, t-1, \quad L \leqslant e \leqslant U\right\}$
- β is called the "base"
- t is called the "precision"
- L,U represent the range of the exponent
- $d_{0} \cdot d_{1} d_{2} \ldots d_{t-1}$ is called the mantissa or significand
- if $d_{0}=0$ then the number is zero (Normalization)
- e is called the exponent

Computer Representation of Real Numbers

- (Toy)Normalized Binary Floating Point Numbers
$F(10,2,-1,1)$
$=\left\{ \pm 10^{e}\left(d_{0} . d_{1}\right) \mid 0 \leqslant d_{i} \leqslant 9, i=0,1, \quad-1 \leqslant e \leqslant 1\right\}$
$=\left\{ \pm 10^{e}\left(d_{0}+d_{1} / 10\right) \mid 0 \leqslant d_{i} \leqslant 9, i=0,1, \quad-1 \leqslant e \leqslant 1, \quad d_{0}=\right.$ 0 implies number is zero\}

Problem: Write out all numbers on the number line Hint:

$$
\begin{array}{rc}
0 . d_{0} d_{1} & e=-1 \\
d_{0} \cdot d_{1} & e=0 \\
d_{0} d_{1} \cdot 0 & e=1
\end{array}
$$

Python double precision real numbers

Computer Representation of Real Numbers

For Python floating point numbers:
$\beta=2, t=53, L=-1022, U=1023$ so an individual floating point number has the bit form,

$$
s_{1} e_{1} e_{2} \ldots e_{11} d_{1} d_{2} \ldots d_{52}
$$

as seen from the picture in memory

Python representation of real numbers

Computer Representation of Real Numbers

To convert the bit string $s_{1} e_{1} e_{2} \ldots e_{11} d_{1} d_{2} \ldots d_{52}$ to a decimal (base ten) real number,
(1) Convert $e_{1} e_{2} \ldots e_{11}$ to a decimal number E .
(2) Multiply 2^{E-1023} with $1 . d_{1} d_{2} \ldots d_{52}$ (just shift the decimal point $E-1023$ bits) and convert this to a decimal real number R.
(3) Compute $(-1)^{s_{1}} * R$

The above sequence can be compactly expressed in the formula,

$$
\text { number }=(-1)^{s_{1}} *\left(1 . d_{1} d_{2} \ldots d_{52}\right) * 2^{E-1023} \text { where } 0<E<2047
$$

If we write $1 . d_{1} d_{2} \ldots d_{52}$ as $1 . f$ then the above expression can be written in the compact form,

$$
\text { number }=(-1)^{s_{1}} * 1 . f * 2^{E-1023} \text { where } 0<E<2047
$$

What happened to zero?

"Special" numbers

Special numbers use values of $E=0$ or $f=0$.
For example, zero is represented by $E=0, f=0$
$(-1)^{s} 2^{-1022}(0.0)$

s	$0 \ldots 0$	$0 \ldots 0$
bit $: 63$	bits $: 62 \leftarrow 52$	bits $: 51 \leftarrow 0$

subnormal(denormalized) numbers by $E=0, f \neq 0$
$(-1)^{s} 2^{-1022}(0 . f)$

s	$0 \ldots 0$	f
bit $: 63$	bits $: 62 \leftarrow 52$	bits $: 51 \leftarrow 0$

Infinity is represented by $E=2047, f=0$
$(-1)^{s} 2^{1024}(1.0)$
NaN is represented by $E=2047, f \neq 0$
$(-1)^{s} 2^{1024}(1 . f)$

Test your understanding

Which values in \mathbb{Q} are exactly representable with a finite binary decimal expansion?

- Hint: Use the Fundamental Theorem of Arithmetic: Any integer greater than 1 can be written as a unique product (up to ordering of the factors) of prime factors.
- Is 0.1 exactly representable in Python?
- How do we display the value Python assigns to 0.1 ?

Are floating point values equally spaced?

- For a toy Normalized Binary Floating point system $F(2,3,-1,1)=$ $\left\{(-1)^{s} 2^{e}\left(1 . d_{1} d_{2}\right) \mid s=0\right.$ or $s=1, d_{i}=0$ or $\left.1, L \leqslant e \leqslant U\right\}$ are the values equally spaced? (We are ignoring "special" numbers.)

Test your understanding

What are the largest and smallest(positive both subnormal and not subnormal) IEEE numbers?

- Check your answer by typing: import numpy as np np.finfo(np.float).tiny np.finfo(np.float).max at the Python prompt.

IEEE representable numbers

Floating Point Number Line

Overflow/Underflow

- computations too close to zero may result in underflow
- computations too large may result in overflow
- overflow error is considered more severe
- underflow can just fall back to 0

Test your understanding

Example

Effects of spacing of floating point values

```
first = []
a=1.0
while a > 0.0:
    a = a/2.0
    first.append(a)
second = []
a=1.0
while a+1.0 > 1.0:
        a=a/2.0
        second.append(a)
print('len(first) =', len(first))
print('first[-1] = ', first[-1])
print('len(second) = ',len(second))
print('second[-1] = ', second[-1])
```


Fraction Algorithm

An algorithm to compute the binary representation of a fraction x :

$$
\begin{aligned}
x & =0 . b_{1} b_{2} b_{3} b_{4} \ldots \\
& =b_{1} \cdot 2^{-1}+\ldots
\end{aligned}
$$

Multiply x by 2 . The integer part of $2 x$ is b_{1}

$$
2 x=b_{1} \cdot 2^{0}+b_{2} \cdot 2^{-1}+b_{3} \cdot 2^{-2}+\ldots
$$

Example

Example:Compute the binary representation of 0.625

$$
\begin{array}{rll}
2 \cdot 0.625=1.25 & \Rightarrow & b_{1}=1 \\
2 \cdot 0.25=0.5 & \Rightarrow & b_{2}=0 \\
2 \cdot 0.5=1.0 & \Rightarrow & b_{3}=1
\end{array}
$$

So $(0.625)_{10}=(0.101)_{2}$

Section 4: Errors

Data Error

Data Error can occur when making a measurement of a physical quantity. But Data Error can also occur by means of a data entry error.

Numerical Error: Roundoff

Roundoff occurs when digits in a decimal point (0.3333...) are lost (0.3333) due to a limit on the memory available for storing one numerical value.

Numerical Error: Truncation

Truncation error occurs when approximations such as truncating an infinite series, replacing a derivative by a finite difference quotient, replacing an arbitrary function by a polynomial, or terminating an iterative sequence before it converges.

Floating Point Errors

- Not all reals can be exactly represented as a machine floating point number. Then what?
- Roundoff error
- IEEE options:
- Round to next nearest FP (preferred), Round to 0, Round up, and Round down
- We will use the notation $f l(x)$ to denote the floating point value representing a real number x.

Let x_{+}and x_{-}be the two floating point machine numbers closest to x

- round to nearest: $\operatorname{round}(x)=x_{-}$or x_{+}, whichever is closest
- round toward 0 : $\operatorname{round}(x)=x_{-}$or x_{+}, whichever is between 0 and x
- round toward $-\infty$ (down): round $(x)=x_{-}$(used in representing interval numbers)
- round toward $+\infty$ (up): round $(x)=x_{+}$(used in representing interval numbers)

Machine Epsilon

The machine epsilon ϵ_{m} is the smallest positive machine number such that

$$
1+\epsilon_{m} \neq 1
$$

- The double precision machine epsilon is 2^{-52}.

```
1 >> eps
2 \mp@code { a n s } = 2 . 2 2 0 4 e - 1 6
```


Measuring Error - Accuracy

- Here we define the absolute error:

$$
\begin{aligned}
\text { Absolute } \operatorname{Error}\left(x_{a}\right) & =x_{a}-x_{t} \\
& =\text { approximate value }- \text { true value }
\end{aligned}
$$

- This doesn't tell the whole story. For example, if the values are large, like billions, then an Error of 100 is small. If the values are smaller, say around 10, then an Error of 100 is large. We need the relative error:

$$
\text { Relative } \operatorname{Error}\left(x_{a}\right)=\frac{x_{a}-x_{t}}{x_{t}}
$$

$$
=\frac{\text { approximate value }- \text { true value }}{\text { true value }}
$$

when true value $\neq 0$

- After some simple algebra on the previous equation above we can write,
approximate value $=$ true value $*(1+$ Relative Error $)$

Floating Point Errors

How big is roundoff error?

Suppose x is a real number and $f l(x)=x_{-}$where x_{-}is not a subnormal floating point number or zero. We further assume that rounding is performed by "rounding to nearest".

$$
\begin{aligned}
x & =\left(1 . d_{1} d_{2} d_{3} \ldots d_{52} \ldots\right)_{2} \times 2^{e} \\
x_{-} & =\left(1 . d_{1} d_{2} \ldots d_{52}\right)_{2} \times 2^{e} \\
x_{+} & =\left(\left(1 . d_{1} d_{2} \ldots d_{52}\right)_{2}+2^{-52}\right) \times 2^{e} \\
\left|x_{-}-x\right| & \leqslant \frac{\left|x_{+}-x_{-}\right|}{2}=2^{e-53} \\
\left|\frac{x_{-}-x}{x}\right| & \leqslant \frac{2^{e-53}}{2^{e}}=2^{-53}=\epsilon_{m} / 2
\end{aligned}
$$

Unit Roundoff Error

unit roundoff error $=\mu=\epsilon_{m} / 2$

Floating Point Errors - Accuracy

From the previous slides

$$
\begin{aligned}
f l(x)= & x *(1+\text { Relative Error }) \\
& \left|\frac{f l(x)-x}{x}\right| \leqslant \mu
\end{aligned}
$$

We have established that for $x \in \mathbb{R}$ and $f l(x)$ not subnormal,

$$
f l(x)=x *(1+\delta(x)) \text { where }|\delta(x)| \leqslant \mu
$$

Relationship between error and Significant Digits

Example

Given $x=123.01234$ and $y=123.0123$ is an approximation of x then

$$
\begin{gathered}
|y-x|=0.00004=0.4 * 10^{-4} \\
\frac{|y-x|}{|x|} \leqslant 3.26 * 10^{-7}
\end{gathered}
$$

From the above example we would like to make the following assertions:

- If absolute error is less than $0.5 * 10^{-t}$ then there are t equal digits to the right of the decimal point between y and x, when both numbers are in the non-scientific notation form,

$$
y=d_{1} d_{2} \ldots d_{n} \cdot d_{n+1} d_{n+2} \ldots d_{n+t} \ldots
$$

- If the relative error is less than $5.0 * 10^{-t}$ then there are t equal digits digits total between y and x when both numbers are in the scientific notation form, e.g. no leading zeros)

$$
x=0 . d_{1} d_{2} \ldots d_{t} \ldots * 10^{e}
$$

Relationship between error and Significant Digits

However, the following example shows that the above assertions are not strictly correct.

Example

Given $x=0.00351$ and an approximation $y=.00346$ then

$$
\begin{gathered}
|y-x|=0.00005=0.5 * 10^{-4} \\
\frac{|y-x|}{|x|} \leqslant 1.43 * 10^{-2}
\end{gathered}
$$

Now x and y agree in three digits to the right of the decimal but the first assertion says it should be four. However if we rounded (to nearest) the fifth decimal digits of x and y then the assertion would be true. If we re-write $x=0.351 * 10^{-2}$ and $y=0.346 * 10^{-2}$ these numbers agree only with one digit but the assertion says it should be two. Again, however, if we round (to nearest) the third decimal digits of x and y then the assertion would be true. How can we overcome this discrepancy in our assertions?

Significant Digits - Accuracy

We overcome the previous problem be re-defining "equal digits" as follows:

Significant Decimal Digits

If $y=d_{1} d_{2} \ldots d_{n} . d_{n+1} d_{n+2} \ldots d_{n+t} \ldots$ is an approximation of x and we have
$|y-x| \leqslant 0.5 * 10^{-t}$ then the t digits starting in the position $\geqslant 10^{-t}$ of y are called "significant decimal digits".

Significant Digits

If y is an approximation of $x=0 . d_{1} d_{2} \ldots d_{t} \ldots * 10^{e}$ and we have $\frac{|y-x|}{|x|} \leqslant 5.0 * 10^{-t}$ then the t digits starting in the position $\geqslant 10^{-t}$ of y are called "significant digits".

Our Job

Given a specific problem. A numerical analyst will do the following:

- Determine the condition of the problem.
- A problem is ill-conditioned if small changes to input values create large errors in the solution, assuming that our implementation is mathematically perfect, i.e. does not introduce round-off or truncation errors.
- A problem is well-conditioned if it is not ill-conditioned.
- Choose a method and specific algorithm that is stable.
- An algorithm is stable if it achieves the level of accuracy defined by the condition of the problem.
- Implement the algorithm so that the calculation is not susceptible to large roundoff error and the approximation has a tolerable truncation error.

How?

- Compute the condition "number" for the problem.
- incorporate roundoff-truncation knowledge into
- the method
- the algorithm
- the software design
- awareness \rightarrow correct interpretation of results

Section 5: Operations on Numbers

For \mathbb{C} - Complex Numbers

- $(a+b i)+(c+d i)=(a+c)+(b+d) i$.
- $(a+b i)-(c+d i)=(a-c)+(b-d) i$.
- $(a+b i) *(c+d i)=(a c-b d)+(b c+a d) i$.
- $(a+b i) /(c+d i)=\frac{a+b i c-d i}{c+d i} \frac{a c+b d}{c-d i} \frac{b c-a d}{c^{2}+d^{2}}+\frac{b}{c^{2}+d^{2}} i$ where $c^{2}+d^{2} \neq 0$.

\mathbb{C} - Complex Numbers

An alternative view

- $a+b i \leftrightarrow\left[\begin{array}{cc}a & b \\ -b & a\end{array}\right]$.

Example

$$
(2+3 i) *(-1-4 i)=10-11 i
$$

since

$$
\left[\begin{array}{cc}
2 & 3 \\
-3 & 2
\end{array}\right] *\left[\begin{array}{cc}
-1 & -4 \\
4 & -1
\end{array}\right]=\left[\begin{array}{cc}
10 & -11 \\
11 & 10
\end{array}\right]
$$

Operators

For $\mathbb{I R}$ - Interval Numbers

Where \circ denotes the operators $+,-, *, /$.

- $[a, b] \circ[c, d]=\{x \circ y \mid x \in[a, b], y \in[c, d]\}$.

Example

$[-1,1]+[-0.1,0.1]=[-1.1,1.1]$

Example

$[2,3]-[2,3]=[-1,1]$ thus $x-x \neq 0$ except for intervals of zero width, e.g. $[3,3]$.

Example

$[-1,2] *([-2,3]+[3,4])=[-1,2] *[1,7]=[-7,14]$ but
$[-1,2] *[-2,3]+[-1,2] *[3,4]=[-4,6]+[-4,8]=[-8,14]$ so the distributive
law doesn't hold.

Operators

For Floating Point Numbers

Denote the double precision floating point numbers $F(2,53,-1022,1023)$ as DPFP. We will assume that the following holds where \circ denotes the operators $+,-, *, /$.

- $f l(x \circ y)=(x \circ y)(1+\delta)$ where $x, y \in D P F P$ and $|\delta| \leqslant \mu$.

Example

$x \circ y$ need not be in DPFP even if both $x, y \in D P F P$. Consider $x=1, y=3$ and x / y

Example

Note that $f l(f l(x+y)+z)=f l(x+f l(y+z))$ fails for some choice of $x, y, z \in D P F P$. For example, when $x=1.111 \ldots 100 * 2^{0} 1$. -fifty bits of 1 's followed by two bits of 0 's and $y=z=1.0 \ldots 0 * 2^{-} 53$.

Fields

The Rationals, Reals and Complex Numbers form a field based on the operations + , *.

Properties of a Field F

- closure: If $a \in F$ and $b \in F$ then $a+b \in F$ and $a * b \in F$.
- associativity: $a+(b+c)=(a+b)+c$ and $a *(b * c)=(a * b) * c$ for all $a \in F, b \in F, c \in F$.
- commutativity: $a+b=b+a$ and $a * b=b * a$ for all $a \in F, b \in F$.
- additive and multiplicative identity: $a+0=a$ and $a * 1=a$ for all $a \in F$.
- additive and multiplicative inverses: $a+(-a)=0$ and $b *(1 / b)=1$ for all $a \in F$ and $b \in F, b \neq 0$.
- distributivity: $a *(b+c)=a * b+a * c$ for all $a \in F, b \in F, c \in F$.

Completeness of the Real Numbers

Upper Bound

Given any non-empty set $S \subset \mathbb{R}$ then we say that S has an upper bound if there exists a real number $r \in \mathbb{R}$ with the property that for any $s \in S$ then $s \leqslant r$.

Least Upper Bound or Supremum

Given any non-empty set $S \subset \mathbb{R}$ that has an upper bound then we say that S has a least upper bound if there exists an upper bound $r_{0} \in \mathbb{R}$ for S with the property that for any upper bound r for S then $r_{0} \leqslant r$.

The Real Numbers satisfy the Dedekind Completeness Property.

Dedekind Completeness

For any non-empty set $S \subset \mathbb{R}$ that has an upper bound, then S has a least upper bound.

Section 6: Functions

Definition

A function is an ordered triple of sets $f=$ (Domain, CoDomain, Graph $)$ where Graph $=\{(x, y) \mid x \in$ Domain, $y \in$ CoDomain $\}$ and Graph has the property that if $(x, y) \in$ Graph and $(x, z) \in$ Graph then $y=z$.

The set $\{y \mid(x, y) \in G r a p h\}$ is called the Range of the function.
If Domain $=A$ and CoDomain $=B$ we say that f maps A into B and write,

$$
f: A \rightarrow B
$$

If $(x, y) \in$ Graph we can write $y=f(x)$.

Example

The triple $\left([-1,1],[-1,1],\left\{(x, y) \mid x^{2}+y^{2}=1, x, y \in[-1,1]\right\}\right)$ is NOT a function, however $\left([-1,1],[0,1],\left\{(x, y) \mid x^{2}+y^{2}=1, x \in[-1,1], y \in[0,1]\right\}\right)$ is a function.

Classification of Functions

Definition

Given a function,

$$
f=(\text { Domain, CoDomain, Graph })
$$

- f is called onto or surjective if CoDomain $=$ Range.
- f is called 1-1 or injective if $\left(x_{1}, y\right),\left(x_{2}, y\right) \in$ Graph implies $x_{1}=x_{2}$.
- f is called bijective if it is both surjective and injective.

Example

The function $\left(\mathbb{R}, \mathbb{R},\left\{(x, y) \mid y=x^{3}, x, y \in \mathbb{R}\right\}\right)$ is a bijection.

Inverse of a Function

Definition

Given a bijective function,

$$
f=(\text { Domain, CoDomain, Graph })
$$

then we can define an inverse function f^{-1} as follows:

$$
\begin{array}{r}
f^{-1}=(\text { CoDomain, Domain, GraphInv }) \text { where } \\
\text { GraphInv }=\{(y, x) \mid x \in \text { Domain, } y \in \text { CoDomain }\}
\end{array}
$$

Example

The function below is a bijection.

$$
\left([0,+\infty),[0,+\infty),\left\{(x, y) \mid y=x^{2}, x, y \in[0,+\infty)\right\}\right)
$$

To determine it's inverse swap x with y in the equation $y=x^{2}$ to obtain, $x=y^{2}$.

$$
\left([0,+\infty),[0,+\infty),\left\{(x, y) \mid x=y^{2}(y=+\sqrt{x}), x \in[0,+\infty)\right\}\right)
$$

Inverse of a Function

Example

The function below is a bijection.

$$
\left(\mathbb{R}^{2}, \mathbb{R}^{2},\left\{(\mathbf{x}, \mathbf{y}) \mid \mathbf{y}=M * \mathbf{x}, \quad \mathbf{x}, \mathbf{y} \in \mathbb{R}^{2}, M=\left[\begin{array}{ll}
1 & 0 \\
2 & 1
\end{array}\right]\right\}\right)
$$

To determine it's inverse swap \mathbf{x} with \mathbf{y} in the equation $\mathbf{y}=M * \mathbf{x}$ to obtain, $\mathbf{x}=M * \mathbf{y}\left(\right.$ or $\left.M^{-1} \mathbf{x}=\mathbf{y}\right)$.

$$
\left(\mathbb{R}^{2}, \mathbb{R}^{2},\left\{(\mathbf{x}, \mathbf{y}) \mid \mathbf{y}=M^{-1} * \mathbf{x}, \quad \mathbf{x} \in \mathbb{R}^{2}, M^{-1}=\left[\begin{array}{cc}
1 & 0 \\
-2 & 1
\end{array}\right]\right\}\right)
$$

Norm Function

Example - Measuring the "size" of Numbers

The function below is called an ℓ^{2} " ℓ two-norm".

$$
\left(\mathbb{R}^{n}, \mathbb{R},\left\{(\mathbf{x}, y)\left|y=|\mathbf{x}|_{2}=\sqrt{\sum_{i=1}^{n} x_{i}^{2}}\right\}\right)\right.
$$

The ℓ^{2} function has the following properties:

- $|\mathbf{u}|_{2} \geqslant 0$ and $|\mathbf{u}|_{2}=0$ only if $\mathbf{u}=(0, \ldots, 0) \in \mathbb{R}^{n}$
- $|r * \mathbf{u}|_{2}=|r| *|\mathbf{u}|_{2}$ for all $r \in \mathbb{R}$ and $\mathbf{u} \in \mathbb{R}^{n}(|r|$ is just the absolute value of $r)$
- $|\mathbf{u}+\mathbf{v}|_{2} \leqslant|\mathbf{u}|_{2}+|\mathbf{v}|_{2}$ for all $\mathbf{u}, \mathbf{v} \in \mathbb{R}^{n}$ (triangle inequality)

Outlook

Next time:

- Taylor Series
- Order of Convergence
- Condition Number
- Stability

