Exam \#2 A Thursday, April 12th

READ and complete the following:

- Bubble your Scantron only with a No. 2 pencil.
- On your Scantron (shown in the figure below), bubble :

1. Your Name
2. Your NetID
3. Form letter " \mathbf{A} "

- No electronic devices or books are allowed while taking this exam. However, you may use a "cheat sheet" - a single sheet of size $8.5 " \times 11 "$ or smaller.
- Please fill in the most correct answer on the provided Scantron sheet.
- We will not answer any questions during the exam.
- Each question has only ONE correct answer.
- You must stop writing when time is called by the proctors.
- Hand in both these exam pages and the Scantron.
- DO NOT turn this page UNTIL the proctor instructs you to.

For the next 2 questions, use the following matrix:

$$
A=\left[\begin{array}{lll}
0 & 2 & 1 \\
3 & 0 & 4 \\
6 & 5 & 0
\end{array}\right]
$$

1. Consider CSR (Compressed Sparse Row), what is $A A$?
(a) $\left[\begin{array}{llllllll}3 & 3 & 1 & 2 & 3 & 4 & 5 & 6\end{array}\right]$
(b) $\left[\begin{array}{llllllll}3 & 3 & 2 & 1 & 3 & 4 & 6 & 5\end{array}\right]$
(c) $\left[\begin{array}{lllllllll}0 & 2 & 1 & 3 & 0 & 4 & 6 & 5 & 0\end{array}\right]$
(d) $\left[\begin{array}{llllll}2 & 1 & 3 & 4 & 6 & 5\end{array}\right]$
2. Consider CSR (Compressed Sparse Row), what is $I A$?
(a) $\left[\begin{array}{llllll}2 & 3 & 1 & 3 & 1 & 2\end{array}\right]$
(b) $\left[\begin{array}{llllll}1 & 1 & 2 & 2 & 3 & 3\end{array}\right]$
(c) $\left[\begin{array}{llll}2 & 3 & 6 & 7\end{array}\right]$
(d) $\left[\begin{array}{llll}1 & 3 & 5 & 7\end{array}\right]$
3. Which of the following statements is True concerning the condition number (κ) of a matrix ?
(a) The condition number of a matrix, for some norms, can be negative.
(b) The condition number of the permutation matrix P, for the 1 -norm, is NOT equal to 1 .
(c) $\kappa(n A)=n * \kappa(A)$, for any norm, where n is any integer
(d) $\kappa(I)=1$, for the 1-norm, where I is the identity matrix.
4. Which matrix has the following MSR (Modified CSR) representation?

$$
\begin{aligned}
& A A=\left[\begin{array}{llllllll}
3 & 5 & 6 & * & 2 & 1 & 4 & 7
\end{array}\right] \\
& J A=\left[\begin{array}{llllllll}
5 & 7 & 8 & 9 & 2 & 3 & 1 & 1
\end{array}\right]
\end{aligned}
$$

(a) $\left[\begin{array}{lll}3 & 4 & 7 \\ 2 & 5 & 0 \\ 1 & 0 & 6\end{array}\right]$
(b) $\left[\begin{array}{lll}3 & 2 & 1 \\ 4 & 5 & 0 \\ 7 & 0 & 6\end{array}\right]$
(c) $\left[\begin{array}{lll}6 & 2 & 1 \\ 4 & 5 & 0 \\ 7 & 0 & 3\end{array}\right]$
(d) $\left[\begin{array}{lll}6 & 4 & 7 \\ 2 & 5 & 0 \\ 1 & 0 & 3\end{array}\right]$
5. Consider

$$
A=\left[\begin{array}{rrr}
4 & -2 & 1 \\
-2 & 3 & 0 \\
1 & 0 & 2
\end{array}\right] \quad b=\left[\begin{array}{l}
1 \\
4 \\
3
\end{array}\right] .
$$

Using Jacobi's iterative method to approximate the solution $A x=b$ with a starting guess of $x_{0}=[1,0,1]^{T}$, what is x_{1} ?
(a) $[1,4,1]^{T}$
(b) $[0,1,1]^{T}$
(c) $[0,2,1]^{T}$
(d) $[1,1,0]^{T}$
6. The lower triangular matrix named L formed by performing the Cholesky factorization of matrix $A=\left[\begin{array}{ll}4 & 0 \\ 0 & 9\end{array}\right]$ looks like $L=\left[\begin{array}{ll}p & 0 \\ q & r\end{array}\right]$.

What is the value of $p+q+r$?
(a) 13
(b) 5
(c) 7
(d) 6
7. What is cost of using Gaussian Elimination in solving the linear system $A x=b$ where A is an m-band, $n \times n$ matrix?
(a) $O\left(n^{2}\right)$
(b) $O\left(m^{2}\right)$
(c) $O\left(m^{2} n\right)$
(d) $O\left(m^{2} n^{2}\right)$
8. Which of the following statement is NOT always true about norms $\|x\|$ for any given vector x ?
(a) $\|x\|>0$
(b) $\|a x\|=|a| \cdot\|x\|$
(c) $\|x+y\| \leq\|x\|+\|y\|$
9. What is the condition number of a 3 by 3 diagonal matrix with diagonal elements $-1,4$ and -7 ?. Hint: try using the 1-norm.
(a) 0
(b) $-4 / 7$
(c) $7 / 4$
(d) 7
10. What is the 2 -norm of the following matrix?
$A=\left[\begin{array}{cc}\sqrt{2} & 1 \\ -\sqrt{2} & 1\end{array}\right]$
(a) 0
(b) 1
(c) $\sqrt{2}$
(d) 2
11. What is the form of $A^{T} A$ in the normal equation?
(a) diagonal
(b) symmetric
(c) orthonormal
(d) orthogonal
12. What are the singular values of the following matrix?
$A=\left[\begin{array}{cc}1 & -1 \\ -2 & 2\end{array}\right]$
(a) $\sqrt{10}$ and 0
(b) 10 and 0
(c) 3 and 0
(d) $\sqrt{3}$ and 0
13. Which of the following is True concerning the solution to the normal equations $A^{T} A x=A^{T} b$?
(a) The normal equations always has a unique solution.
(b) Normal equations has a unique solution when the matrix A has full rank.
(c) Solving the normal equations is always the best way to solve a linear least squares problem.
(d) The condition number of the matrix $A^{T} A$ in the normal equations is always equal to one.
14. Consider $y=2 * x_{1} * t+3 * x_{2} * t^{2}$, and $\left(t_{1}, y_{1}\right)=(1,2),\left(t_{2}, y_{2}\right)=(4,7),\left(t_{3}, y_{3}\right)=(6,12)$ which of the Matrix is Vandermonde matrix? That is, which is the matrix A where $A x \approx b$, and $x=\left[\begin{array}{ll}x_{1} & x_{2}\end{array}\right]^{T}$?
(a) $\left[\begin{array}{cc}2 & 3 \\ 8 & 12 \\ 12 & 18\end{array}\right]$
(b) $\left[\begin{array}{cc}2 & 3 \\ 8 & 48 \\ 12 & 108\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & 1 \\ 4 & 16 \\ 6 & 36\end{array}\right]$
(d) $\left[\begin{array}{cc}1 & 1 \\ 8 & 12 \\ 36 & 108\end{array}\right]$
15. Which of the following matrices is NOT orthogonal?
(a) $\left[\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right]$
(b) $\left[\begin{array}{ll}2 & 0 \\ 0 & \frac{1}{2}\end{array}\right]$
(c) $\left[\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right]$
(d) $\left[\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right]$
16. Let Q be the matrix as given below.

$$
Q=\left[\begin{array}{ccc}
\frac{1}{\sqrt{3}} & \frac{1}{\sqrt{2}} & q_{1} \\
\frac{1}{\sqrt{3}} & \frac{-1}{\sqrt{2}} & q_{2} \\
\frac{1}{\sqrt{3}} & 0 & q_{3}
\end{array}\right]
$$

Find the values of $\left(q_{1}, q_{2}, q_{3}\right)$ for which Q is an orthogonal matrix.
(a) $\left(\frac{1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right)$
(b) $\left(\frac{-1}{\sqrt{6}}, \frac{1}{\sqrt{6}}, \frac{-2}{\sqrt{6}}\right)$
(c) $\left(\frac{1}{\sqrt{3}}, \frac{1}{\sqrt{3}}, \frac{-1}{\sqrt{3}}\right)$
(d) $\left(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}}, 0\right)$
17. Matrix A is defined below. Eigenvalues of $A A^{T}$ were found to be $\lambda_{1}=200$ and $\lambda_{2}=50$. Find the left singular vectors of A. Hint: the left singular vectors are columns of the matrix U where $A=U S V^{T}$.
$\mathrm{A}=\left[\begin{array}{cc}-2 & 11 \\ -10 & 5\end{array}\right]$
(a) $u_{1}=\left[\begin{array}{c}\frac{-1}{\sqrt{2}} \\ \frac{-1}{\sqrt{2}}\end{array}\right], u_{2}=\left[\begin{array}{c}\frac{-1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}}\end{array}\right]$
(b) $u_{1}=\left[\begin{array}{c}\frac{-1}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}}\end{array}\right], u_{2}=\left[\begin{array}{c}\frac{1}{\sqrt{5}} \\ \frac{-1}{\sqrt{5}}\end{array}\right]$
(c) $u_{1}=\left[\begin{array}{c}\frac{-1}{\sqrt{6}} \\ \frac{-1}{\sqrt{6}}\end{array}\right], u_{2}=\left[\begin{array}{c}\frac{1}{\sqrt{6}} \\ \frac{-1}{\sqrt{6}}\end{array}\right]$
(d) $u_{1}=\left[\begin{array}{c}\frac{1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right], u_{2}=\left[\begin{array}{c}\frac{-1}{\sqrt{3}} \\ \frac{1}{\sqrt{3}}\end{array}\right]$
18. If the square matrix Q is orthogonal, then what is the value of $\|Q\|_{2}$?
(a) 0
(b) 1
(c) 2
(d) $+\infty$
19. What is the 1-norm of the matrix A ?
$A=\left[\begin{array}{rrr}-2 & 1 & 0 \\ 0 & 1 & 0 \\ 1 & 0 & -1\end{array}\right]$
(a) 1
(b) 2
(c) 3
(d) 6
20. Consider the matrix $\mathrm{A}=\left[\begin{array}{cc}1 & \rho \\ -\rho & 1\end{array}\right]$, under which conditions is the Gauss-Seidel method guaranteed to converge with this matrix?
(a) $|\rho|<1$
(b) $|\rho|>1$
21. One limitation of using the normal equations for solving a least squares problem is the fact that $\kappa\left(A^{T} A\right)=(\kappa(\mathrm{A}))^{2}$ where $\kappa()$ denotes the condition number.
(a) True
(b) False
22. Suppose that the non-singular square matrix A can be factored as $A=Q R$, where Q is orthogonal and R is upper triangular. Then to solve $A x=b$ we would
(a) Compute $c=Q^{T} b$ and then use back substitution to solve $R x=c$.
(b) Use back substitution to solve $R x=b$ and then compute $Q b$.
(c) Compute $c=Q^{T} b$ and then use forward substitution to solve $R x=c$.
(d) Use forward substitution to solve $R x=b$ and then compute $Q^{T} b$.
23. Let the $n \times n$ matrix named V have columns denoted by v_{i} for $i=1, \ldots, n$ and an $n \times 1$ vector named a have values a_{i} for $i=1, \ldots, n$ then the sum $\sum_{i=1}^{n} a_{i} * v_{i}$ can be written in which of the following equivalent way?
(a) $V^{T} a^{T}$
(b) $a V$
(c) $a^{T} V^{T}$
(d) $V a$
24. Given the matrix A shown below, what is the L in the Cholesky factorization of A ?

$$
A=\left[\begin{array}{cc}
4 & 2 \\
2 & 10
\end{array}\right]
$$

(a) $L=\left[\begin{array}{ll}2 & 1 \\ 0 & 3\end{array}\right]$
(b) $L=\left[\begin{array}{ll}1 & 3 \\ 2 & 0\end{array}\right]$
(c) $L=\left[\begin{array}{ll}2 & 0 \\ 1 & 3\end{array}\right]$
(d) $L=\left[\begin{array}{ll}3 & 1 \\ 0 & 2\end{array}\right]$
25. Let A be an $n \times n$ non-singular matrix. If $A=Q R$ where Q is an $n \times n$ orthogonal matrix and R is an $n \times n$ upper triangular matrix then which of the equalities below are equivalent to $A^{T} A x=A^{T} b$?
(a) $R x=Q b^{T}$
(b) $R x=Q^{T} b$
(c) $Q x=R^{T} b$
(d) $Q^{T} x=R b^{T}$

