No computers, calculators, or books allowed.
You may take with you a "cheat sheet" - a single sheet of size 8.5 " x 11 " or smaller.
You may also use the back pages of this exam for scratch paper.

1. True or False (*) All machine numbers in IEEE-754 are equally spaced.
2. What is $[1,2] \times[3,4]$, where \times is interval multiply?
(a) $[2,4]$
(b) $[1,8]$
(c) $[3,8](*)$
(d) $[6,8]$
3. The first three terms of the Taylor expansion of e^{x} are

$$
e^{x} \approx 1+x+\frac{x^{2}}{2}
$$

What is the relative error in approximating e^{1} with the above series?
(a) $\frac{\left|\frac{5}{2}-e\right|}{2}$
(b) $\frac{\left|\frac{5}{2}-e\right|}{e}(*)$
(c) $\left|\frac{5}{2}-e\right|$
(d) $\frac{\left|\frac{5}{2}-e\right|}{\frac{5}{2}}$
4. Consider the following MATLAB code:
$\mathrm{x}=2^{\wedge}(-100)$;
while $2+x==2$
$\mathrm{x}=2 * \mathrm{x}$;
end
What will happen when this code is run?
(a) The loop will run forever.
(b) The loop will terminate. The final value of x is 2^{-100}.
(c) The loop will terminate. The final value of x is the IEEE-754 ϵ_{m}, i.e. machine precision.
(d) The loop will terminate. The final value of x is twice the IEEE-754 ϵ_{m}, i.e. twice machine precision. ${ }^{*}$)
5. Let $f(h)=h+h^{2}+h^{3}+h^{4}$. Which of the following describes the asymptotic behavior of $f(h)$ as $h \rightarrow 0$?
(a) $\mathcal{O}(h)\left(^{*}\right)$
(b) $\mathcal{O}\left(h^{2}\right)$
(c) $\mathcal{O}\left(h^{3}\right)$
(d) $\mathcal{O}\left(h^{4}\right)$
6. Let $f(n)=n+n^{2}+n^{3}+n^{4}$. Which of the following describes the asymptotic growth of $f(n)$ as $n \rightarrow \infty$?
(a) $\mathcal{O}(n)$
(b) $\mathcal{O}\left(n^{2}\right)$
(c) $\mathcal{O}\left(n^{3}\right)$
(d) $\mathcal{O}\left(n^{4}\right)\left({ }^{*}\right)$
7. Using a Taylor series approximation to $f(x)=(\cos (x))^{2}$ with the first two non-zero terms, about the point $x=0$, what is the approximation to $f(0.1)$?
(a) 1.0
(b) $0.99\left(^{*}\right)$
(c) 0.98
(d) 1.01
8. For an $n \times n$ system of linear equations, which of the following statement can never be true?
(a) There is no solution
(b) There is exactly one solution
(c) There are exactly two solutions(*)
(d) There are infinitely many solutions
9. Which one of the following statements regarding the following system is false?

$$
A x=\left[\begin{array}{ll}
2 & 3 \\
6 & 9
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2}
\end{array}\right]=\left[\begin{array}{l}
b_{1} \\
b_{2}
\end{array}\right]=b
$$

(a) With $b=\left[\begin{array}{ll}6 & 18\end{array}\right]^{T}$, there are infinitely solutions
(b) With $b=\left[\begin{array}{ll}6 & 19\end{array}\right]^{T}$, there are no solutions
(c) There is exactly one solution regardless of value of $b\left(^{*}\right)$
10. Let $A=\left[\begin{array}{rr}\delta & 1 \\ 1 & -\delta\end{array}\right]$ where δ is a real number. Which one of the following is false?
(a) The inverse of A is $\left[\begin{array}{cc}\frac{\delta}{1+\delta^{2}} & \frac{1}{1+\delta^{2}} \\ \frac{1}{1+\delta^{2}} & \frac{-\delta}{1+\delta^{2}}\end{array}\right]$
(b) The matrix A is nonsingular for all real δ
(c) The LU factorization of A without pivoting exists for $\delta=0\left(^{*}\right)$
(d) The LU factorization of A without pivoting does not exist for $\delta=0$
11. Having obtained LU factorization of $A, A x=b$ becomes $L U x=b$, it can be solved by
(a) forward-substitution of an upper triangular system followed by backward-substitution of a lower triangular system
(b) backward-substitution of a lower triangular system followed by forward-substitution of an upper triangular system
(c) forward-substitution of a lower triangular system followed by backward-substitution of an upper triangular system (*)
(d) backward-substitution of an upper triangular system followed by forward-substitution of a lower triangular system
12. Let

$$
A=\left[\begin{array}{cc}
1 & 1+\alpha \\
1-\alpha & 1
\end{array}\right]
$$

Which one of the following statements is false?
(a) Using exact arithmetic for computing the determinant, the determinant of A is α^{2}
(b) In floating-point arithmetic, if $|\alpha|<\sqrt{\epsilon_{m}}$, then the computed value of the determinant will be zero. (where ϵ_{m} denotes the machine epsilon)(*)
(c) When we compute the LU factorization of $A, L=\left[\begin{array}{cc}1 & 0 \\ 1-\alpha & 1\end{array}\right]$
(d) When we compute the LU factorization of $A, L=\left[\begin{array}{cc}1 & 1+\alpha \\ 0 & \alpha\end{array}\right]$
13. Compute the LU factorization of A. Let

$$
A=\left[\begin{array}{rrr}
1 & 1 & 0 \\
-1 & 2 & 3 \\
1 & 3 & 2
\end{array}\right]
$$

Which one of the following is false?
(a) The elementary elimination matrices $M_{1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ 1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right], M_{2}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -2 / 3 & 1\end{array}\right]$
(b) $U=\left[\begin{array}{lll}1 & 1 & 0 \\ 0 & 3 & 3 \\ 0 & 0 & 0\end{array}\right]$
(c) $L_{1}=M_{1}^{-1}=\left[\begin{array}{rrr}1 & 0 & 0 \\ -1 & 1 & 0 \\ -1 & 0 & 1\end{array}\right], L_{2}=M_{2}^{-1}=\left[\begin{array}{ccc}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 2 / 3 & 1\end{array}\right]$
(d) $L=\left[\begin{array}{rcc}1 & 0 & 0 \\ -1 & 1 & 0 \\ 1 & 2 / 3 & 1\end{array}\right]$
14. Given the LU factorization of the A as shown below compute the determinant of A .

$$
A=\left[\begin{array}{ccc}
5 & -5 & 10 \\
2 & 0 & 8 \\
1 & 1 & 5
\end{array}\right]=\left[\begin{array}{ccc}
1 & 0 & 0 \\
0.4 & 1 & 0 \\
0.2 & 1 & 1
\end{array}\right] *\left[\begin{array}{ccc}
5 & -5 & 10 \\
0 & 2 & 4 \\
0 & 0 & -1
\end{array}\right]
$$

(a) $\operatorname{det}(\mathrm{A})=0$
(b) $\operatorname{det}(\mathrm{A})=1$
(c) $\operatorname{det}(\mathrm{A})=10$
(d) $\operatorname{det}(\mathrm{A})=-10\left(^{*}\right)$
15. What is the ∞-norm of the vector

$$
\left[\begin{array}{c}
-2 \\
0 \\
-5
\end{array}\right]
$$

(a) 0
(b) 2
(c) $\left.5{ }^{*}\right)$
(d) 7
16. Using Gaussian Elimination with partial pivoting to solve the following matrix problem, what is the first pivot position?

$$
A x=\left[\begin{array}{cccc}
1 & 1 & 2 & -1 \\
1 & 0 & -4 & 1 \\
1 & 2 & 8 & 1 \\
-2 & 1 & 5 & 1
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
3 \\
4
\end{array}\right]=b
$$

(a) Row 1, Column $1\left({ }^{*}\right)$
(b) Row 2, Column 1
(c) Row 2, Column 2
(d) Row 3, Column 3
17. True or False (*) If condition number for a function $G: \mathbb{R} \rightarrow \mathbb{R}$ is large then $G(x)$ is insensitive to changes in x.
18. A is an $n x n$ matrix. If A is singular, which of the following statement is NOT true?
(a) The inverse of A does not exist.
(b) $\operatorname{Rank}(A)$ is less than n.
(c) A solution to $A x=b$ does not exist.(*)
(d) $\operatorname{Det}(A)=0$.
19. Assume that the bisection method converges to find a root r for a function $f(x)$ in the interval [0, 1]. How many iterations are required to obtain $\left|x_{n}-r\right|<0.01$? You are given that $\operatorname{sign}(f(0)) \neq \operatorname{sign}(f(1))$ and $x_{0}=0.5$.
(a) 4
(b) $6\left(^{*}\right)$
(c) 8
(d) 10
20. Applying Newton's method to $f(x)=(x-1)^{2}$ with initial guess $x_{0}=0$, what is the value of x after two iteration?
(a) 0
(b) $1 / 3$
(c) $3 / 4\left(^{*}\right)$
(d) 1
21. Applying Secant's method to $f(x)=(x-1)^{2}$ with initial guesses $x_{0}=0$ and $x_{1}=\frac{1}{2}$, what is the value of x after one iteration?
(a) 0
(b) $2 / 3\left(^{*}\right)$
(c) $3 / 4$
(d) 1
22. Assume that we use a new root finding method. For this method, at the nth step, the error is $e_{n}=1 / n^{2}$. What is the convergence rate?
(a) Cubic
(b) Super linear
(c) quadratic
(d) Sublinear (*)
23. If $f(100)=5$ and $f(101)=5.1$, which of the following is a good estimate for the absolute condition number of $f(x)$ at $x=100$?
(a) $0.1\left(^{*}\right)$
(b) 2
(c) 10
(d) 0.5
24. Consider solving system of equations $x_{1} x_{2}+10=0$ and $x_{2}-1=0$ using Newton's method. For which of the following starting values will this method fail?
(a) $\left(x_{1}, x_{2}\right)=(1,2)$
(b) $\left(x_{1}, x_{2}\right)=(1,0)\left({ }^{*}\right)$
(c) $\left(x_{1}, x_{2}\right)=(1,1)$
(d) $\left(x_{1}, x_{2}\right)=(2,1)$
25. Given the code below, compute the best asymptotic bound for the number of floating point operations based on the value n.

```
for k = 1,\ldots,n-1
    for i = k+1,\ldots,n
        xmult = A(i, k)/A(k,k)
        A(i,k) = xmult
        for j = k+1,\ldots,n
            A(i, j) = A(i, j) - xmult*A(k,j)
        end
        b(i) = b(i) - xmult*b(k)
    end
end
```

(a) $O(n)$
(b) $O\left(n^{2}\right)$
(c) $O\left(n^{3}\right)\left(^{*}\right)$
(d) $O\left(n^{4}\right)$

