This is a 60 minute exam.

No electronic devices or books allowed.

Choose just one answer. Choose the best answer.

You may take with you a "cheat sheet" - a single sheet of size $8.5" \ge 11"$ or smaller.

- 1. Which of the following is **not** an advantage of solving symmetric positive definite general linear systems as compared to general linear system?
 - (a) About half as much work is required
 - (b) About half as much storage is required
 - (c) They are always well conditioned (*)
 - (d) No pivoting is necessary for numerical stability
- 2. Consider

$$\mathbf{A} = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 3 & -1 \\ 0 & -1 & 4 \end{bmatrix} \quad b = \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

Using Jacobi's iterative method to approximate the solution $\mathbf{A}x = b$ with a starting guess of $x_0 = [0, 2, 0]$ what is x_1 ?

- (a) $[0, 2, 0]^T$
- (b) $[1/2, 1/3, 1/4]^T$
- (c) $[1/2, 2/3, 1/4]^T$
- (d) $[1, 2/3, 1/2]^T(*)$

3. If **P** is a permutation matrix, which of the following properties do **not** always hold?

- (a) $P = P^{T}(*)$
- (b) 2-norm condition number $\kappa(\mathbf{P}) = 1$
- (c) $P^{-1} = P^{T}$
- (d) $\|\mathbf{P}\|_2 = 1$
- 4. What is the 2-norm of the matrix A?

A =	[2	1]
	1	2

- (a) 1
- (b) 2
- (c) 3 (*)
- (d) 9

- 5. Which of the following transformations doesn't change the eigenvalues of the matrix A?
 - (a) $c\mathbf{A}$ for any scalar c
 - (b) $\mathbf{T^{-1}AT}$ for any nonsingular matrix \mathbf{T} (*)
 - (c) \mathbf{A}^n for any integer n > 0
 - (d) $\mathbf{A} k\mathbf{I}$ for any scalar k
- 6. Apply two iterations of normalized power method to the matrix $\mathbf{A} = \begin{bmatrix} 1 & 4 \\ 1 & 1 \end{bmatrix}$ using $x_0 = \begin{bmatrix} 1 \\ 1 \end{bmatrix}$ as starting vector. After normalization, one entry of the resulting vector will be one. What is the value of the other entry?
 - (a) 7/13 (*)
 - (b) 8/13
 - (c) 9/13
 - (d) 10/13

For next 2 questions use following matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 3\\ 4 & 2 \end{bmatrix}$$

- 7. Consider MSR (Modified CSR) (Please note we are asking MSR not CSR), what is AA?
 - (a) $\begin{bmatrix} 1.0 & 3.0 & * & 2.0 & 4.0 \end{bmatrix}$ (b) $\begin{bmatrix} 1.0 & 2.0 & * & 3.0 & 4.0 \end{bmatrix}$ (*) (c) $\begin{bmatrix} 1.0 & 4.0 & * & 3.0 & 2.0 \end{bmatrix}$ (d) $\begin{bmatrix} 1.0 & 3.0 & * & 4.0 & 2.0 \end{bmatrix}$

8. Consider MSR (Modified CSR) (Please note we are asking MSR not CSR), what is JA?

- (a) $\begin{bmatrix} 4 & 5 & 6 & 2 & 1 \end{bmatrix}$ (*) (b) $\begin{bmatrix} 1 & 2 & 2 & 1 \end{bmatrix}$ (c) $\begin{bmatrix} 1 & 3 \end{bmatrix}$ (d) $\begin{bmatrix} 1 & 2 & 3 & 4 \end{bmatrix}$
- **9.** Given \hat{x} is the computed solution and x^* is the true solution of $\mathbf{A}x = \mathbf{B}$, and error $= x^* \hat{x}$, which of the following is true?
 - (a) $\mathbf{A} \times \text{Residual} = \text{error}$
 - (b) Residual = error
 - (c) Residual = $\mathbf{A} \times \operatorname{error}(^*)$
 - (d) Residual = $x^* \hat{x}$

- 10. Given a non-singular symmetric positive definite $n \times n$ matrix **A**, then the best bound on the number of iterations needed for the solution to $\mathbf{A}x = b$ obtained by the conjugate gradient method using infinite precision arithmetic is given by,
 - (a) $O(n^2)$
 - (b) O(n) (*)
 - (c) $O(n^3)$
 - (d) $O(2^n)$
- 11. True or False (*) In the singular value decomposition of a matrix $\mathbf{A} = \mathbf{U}\mathbf{S}\mathbf{V}^{T}$ the \mathbf{U}, \mathbf{S} and \mathbf{V} , are unique.
- 12. Consider a full rank matrix A, and SVD of $A = USV^{T}$. Which of the following is true?
 - (a) **V** is orthogonal
 - (b) U is the matrix of eigenvectors of $\mathbf{A}\mathbf{A}^{T}$
 - (c) condition number of $\mathbf{A} = \sigma_{max} / \sigma_{min}$
 - (d) All of above (*)
- **13.** What is the residual vector?
 - (a) $A^{-1}b x$
 - (b) b Ax (*)
 - (c) $\mathbf{A}^{\mathbf{T}}\mathbf{A}x \mathbf{A}^{\mathbf{T}}b$
 - (d) $\mathbf{A} b$

14. The least square solution is given by which of the following conditions?

- (a) maximizing the square of the 2-norm of the residual
- (b) minimizing the square of the 2-norm of the residual (*)
- (c) maximizing the eigenvalues in the 2-norm
- (d) minimizing the eigenvectors in the 2-norm
- 15. True or False(*) The normal equation of a linear least squares problem always has a unique solution.
- 16. Which factorization of $\mathbf{A}^{T}\mathbf{A}$ should be used to solve the normal equation $\mathbf{A}^{T}\mathbf{A}x = \mathbf{A}^{T}b$, assuming the matrix \mathbf{A} has full rank?
 - (a) LU factorization
 - (b) Cholesky factorization (*)
 - (c) Gaussian elimination
 - (d) Gaussian elimination with pivoting
- 17. True (*) or False An orthogonal matrix **Q** always preserve 2-norm of any vector v, i.e. $\|\mathbf{Q}v\|_2^2 = \|v\|_2^2$.

- **18.** Consider $m \times n$ matrix **A** of rank r, if the singular value decomposition $\mathbf{A} = \mathbf{USV^T}$ is given, what is x of the least square $\mathbf{A}x \cong b$'s solution?
 - (a) $\sum_{i=1}^{r} (u_i^T b) \sigma_i^{-1} v_i$ (*) (b) $\sum_{i=1}^{m} (u_i^T b) \sigma_i v_i$ (c) $\sum_{i=1}^{r} (u_i b) \sigma_i^{-1} v_i$ (d) $\sum_{j=1}^{n} \sum_{i=1}^{r} (u_i^j b_j) \sigma_i^{-1} v_i$

19. What is the condition number induced by the 2-norm of the orthogonal matrix shown below?

1	1	1]
$\overline{\sqrt{2}}$	1	1

(a) 0

- (b) $\sqrt{2}$
- (c) 1 (*)
- (d) 2

20. A matrix with a large condition number is said to be

- (a) stable
- (b) unstable
- (c) well-conditioned
- (d) ill-conditioned (*)

21. A backwards-stable algorithm gives ______ solution to ______ problem.

- (a) the exact; a well-conditioned
- (b) an approximate; an unstable
- (c) the exact; a nearby (*)
- (d) the exact; an ill-conditioned
- **22.** What is the equation for the least-squares line (y = ax + b) for the data x = -1, 0, 1 and y = 5, 1, 0?
 - (a) y = -5/2x + 2 (*)

(b)
$$y = -5/2x - 2$$

- (c) y = -3/2x + 5/3
- (d) y = -5/2x

The next three problems are about the structure of the matrix **A** discussed below. Assume that we desire to interpolate a function f(x) at the points $\{x_1, \ldots, x_n\}$ using the basis $\{\phi_1, \ldots, \phi_n\}$. That is, we wish to construct a function g(x), where

$$g(x) = \sum_{j=1}^{n} a_j \phi_j(x),$$

the a_j are real numbers, and $g(x_i) = f(x_i)$ for $i = 1 \dots n$. To do this we create the linear system

$$\mathbf{A}\left[\begin{array}{c}a_1\\\vdots\\a_n\end{array}\right] = \left[\begin{array}{c}f(x_1)\\\vdots\\f(x_n)\end{array}\right]$$

where **A** is an $n \times n$ matrix.

- **23.** If the ϕ_i are the Lagrange polynomial basis, what is the form of the matrix **A**?
 - (a) Identity (*)
 - (b) Diagonal, but not the identity
 - (c) Triangular, but not diagonal
 - (d) No special structure
- **24.** If the ϕ_i are the Newton polynomial basis, what is the form of the matrix **A**?
 - (a) Identity
 - (b) Diagonal, but not the identity
 - (c) Triangular, but not diagonal (*)
 - (d) No special structure

25. If the ϕ_i are the monomial polynomial basis, what is the form of the matrix **A**?

- (a) Identity
- (b) Diagonal, but not the identity
- (c) Triangular, but not diagonal
- (d) No special structure (*)