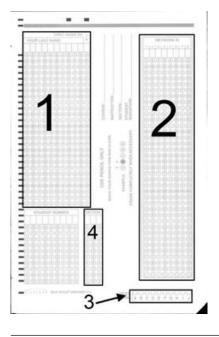
$\begin{array}{c} {\bf Midterm \ Exam} \\ {\bf Wednesday, \ July \ 3^{rd}} \end{array}$

READ and complete the following:

- Bubble your Scantron only with a No. 2 pencil.
- On your Scantron (shown in the figure below), bubble :
 - 1. Your Name
 - 2. Your NetID
 - **3.** Form letter "**A**"



- No electronic devices or books are allowed while taking this exam. However, you may use a "cheat sheet" a single sheet of size 8.5" x 11" or smaller.
- Please fill in the most correct answer on the provided Scantron sheet.
- We will not answer any questions during the exam.
- Each question has only ONE correct answer.
- You must stop writing when time is called by the proctors. No extra time will be given after the exam ends to fill in bubble sheets with answers.
- Hand in both these exam pages and the Scantron.
- DO NOT turn this page UNTIL the proctor instructs you to.

- 1. (True/False) $2 + \epsilon_m = 2$? (ϵ_m is machine epsilon)
 - (a) True
 - (b) False
- 2. (True/False) $1 + \frac{1}{\epsilon_m} = \frac{1}{\epsilon_m}$? (ϵ_m is machine epsilon)
 - (a) True
 - (b) False
- 3. (True/False) Overflow error is considered more severe than underflow.
 - (a) True
 - (b) False
- 4. (True/False) If catastrophic cancellation occurs when subtracting two floating point numbers, it means the relative error in the result is high.
 - (a) True
 - (b) False
- 5. (True/False) The linear rate of convergence of the bisection method is only obtained when the first derivative at the root is not equal to 0.
 - (a) True
 - (b) False
- 6. Convert the value 0.6875 to binary.
 - (a) 0.01011
 - (b) 1.011
 - (c) 0.1011
 - (d) 0.11011

- 7. Given a starting guess of $x_1 = 2$, what is an approximation to a root of $f(x) = x^2 3$ using one step of Newtons method?
 - **(a)** 0
 - **(b)** -2
 - (c) 7/4
 - (d) 9/4
- 8. Given $f(x) = x^3 x^2 1$ and an interval [0, 2] that contains a root, if the first iteration of the bisection method produces $x_1 = 1$ what is x_3 (3-rd iteration)?
 - **(a)** 0
 - (b) 11/8
 - (c) 5/4
 - (d) 3/2
- 9. Consider the matrix

$$A = \begin{bmatrix} 1 & 3 & 2 & 4 \\ 2 & 2 & 4 & 5 \\ 4 & 0 & 0 & 16 \\ 2 & 6 & 4 & 8 \end{bmatrix}$$

How many solutions will the linear system Ax = b have?

- (a) 1
- (b) None
- (c) An infinite number
- (d) It depends on b

10. What is the determinant of the matrix A?

$$A = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix} * \begin{bmatrix} 2 & 3 & 1 \\ 0 & -3 & 5 \\ 0 & 0 & -1 \end{bmatrix}$$

- **(a)** 0
- **(b)** 1
- (c) 6
- (d) 12

11. Given the values for the two matrices shown below,

$$M_1 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & 0 & 1 \end{bmatrix}$$
$$M_2 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -4 & 1 \end{bmatrix}$$

and for some matrices A and U (values not given) we can write,

$$M_2 * M_1 * A = U$$

then we can write,

$$A = L * U$$

What are the values of L?

$$\begin{array}{c} \mathbf{(a)} \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -3 & 4 & 1 \end{bmatrix} \\ \mathbf{(b)} \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 3 & -4 & 1 \end{bmatrix} \\ \mathbf{(c)} \begin{bmatrix} 0 & 0 & 0 \\ 2 & 0 & 0 \\ -3 & 4 & 0 \end{bmatrix} \\ \mathbf{(d)} \begin{bmatrix} 0 & 0 & 0 \\ -2 & 0 & 0 \\ 3 & -4 & 0 \end{bmatrix}$$

12. What is the relative condition number in computing $G(x) = \frac{1}{x}$ for $x \neq 0$?

- **(a)** 0
- **(b)** 1
- (c) x
- (d) x^2
- **13.** What is the Taylor expansion of the function $f(x, y) = xe^{x+y}$ about (x, y, z) = (0, 0, 0) for terms $x^{k_1}y^{k_2}z^{k_3}$ where |k| = 0, 1, 2, 3 and $|k| = k_1 + k_2 + k_3$?
 - (a) $x + y + \frac{x^2}{2} + xy + \frac{y^2}{2} + \frac{x^3}{6} + \frac{x^2y}{2} + \frac{xy^2}{2} + \frac{y^3}{6}$ (b) $x + x^2 + xy + \frac{x^3}{2} + x^2y + \frac{xy^2}{2}$ (c) $2x + y + \frac{x^2}{2} + xy + \frac{y^2}{2} + \frac{x^3}{6} + \frac{x^2y}{2} + \frac{xy^2}{2} + \frac{y^3}{6}$ (d) $x + x^2y$
- 14. What is the rate of convergence of the following sequence?

$$10^{-3}, 10^{-5}, 10^{-7}, 10^{-9}, \dots$$

- (a) superlinear
- (b) sublinear
- (c) linear
- (d) quadratic
- 15. Given an $n \ge n$ matrix A and $n \ge 1$ vector x, what is the BEST asymptotic upper bound for the number of floating point operations in computing,

$$x^T * A * x$$

based on n?

- (a) $\mathcal{O}(n)$
- (b) $O(n^2)$
- (c) $O(n^3)$
- (d) $\mathcal{O}(n^4)$

16. Given the code below, compute the BEST asymptotic bound for the number of floating point operations needed to execute the code below based on the value n.

for $k = 1 \dots n - 1$ for $i = k + 1 \dots n$ $xmult = a_{ik}/a_{kk}$ $a_{ik} = xmult$ for $j = k + 1 \dots n$ $a_{ij} = a_{ij} - (xmult)a_{kj}$ end $b_i = b_i - (xmult)b_k$ end end

- (a) O(n)
- (b) $O(n^2)$
- (c) $O(n^3)$
- (d) $O(n^4)$

17. What is the product of the interval numbers [-1,3] * [-4,9]?

- (a) [4, 27]
- **(b)** [-9, 27]
- (c) [-12, 27]
- (d) [-4,9]
- **18.** In using Newton's Method for finding the root of f(x, y) = 0 where $f = [f_1(x, y), f_2(x, y)]^T$ as shown below, what would be the value of inverse of the Jacobian matrix, that is, J^{-1} ?

$$f_1(x, y) = 3x + 2y + 3 = 0$$

$$f_2(x, y) = 6x + 4y + 6 = 0$$

- (a) $\begin{bmatrix} 3 & 2 \\ 6 & 4 \end{bmatrix}$ (b) $\begin{bmatrix} 3 & 2 & 0 \\ 6 & 4 & 0 \end{bmatrix}$ (c) $\begin{bmatrix} 0 & 0 \\ 0 & 0 \end{bmatrix}$
- (d) Does not exist

- 19. Use the Secant Method to find a root of $f(x) = x^3 2x^2 + x + 1 = 0$. Given $x_1 = -0.5$, $x_2 = 0$ what is the value of x_3 ?
 - (a) −1
 - **(b)** -3/2
 - (c) −4/9
 - (d) -5/6
- **20.** Given the matrix A shown below. What would be the first elementary elimination matrix M_1 in order to perform Gaussian Elimination?
 - $A = \begin{bmatrix} 1 & 1 & 1 \\ 2 & 2 & 2 \\ -1 & 2 & 3 \end{bmatrix}$ (a) $M_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ -1 & 0 & 1 \end{bmatrix}$ (b) $M_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 0 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ (c) $M_{1} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 1 & 1 \end{bmatrix}$ (d) $M_{1} = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 1 & 0 & 1 \end{bmatrix}$
- 21. Which one of the following sets of vectors are linearly independent?

(a)
$$\begin{bmatrix} 1\\1\\1\\1 \end{bmatrix}, \begin{bmatrix} 3\\2\\5 \end{bmatrix}, \begin{bmatrix} 5\\9\\10 \end{bmatrix}$$

(b) $\begin{bmatrix} 1\\0\\1\\1 \end{bmatrix}, \begin{bmatrix} 0\\0\\0\\0 \end{bmatrix}, \begin{bmatrix} 5\\7\\9 \end{bmatrix}$
(c) $\begin{bmatrix} \frac{1}{\sqrt{2}}\\0\\\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} 0\\\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}}\\\frac{1}{\sqrt{2}} \end{bmatrix}, \begin{bmatrix} 0\\1\\1 \end{bmatrix}$

- 22. Consider the statements below.
 - (a) For an $m \ge n$ matrix A with m > n then $A^T A$ is a square matrix.
 - (b) For an $m \ge n$ matrix A with m > n, if $A \ast B = A$, then B will also have entries not equal to either 1 or 0.
 - (c) It is possible to multiply a square and a rectangular matrix.

Choose the correct statement below.

- (a) All the statements are true.
- (b) Only (a) and (c) are true.
- (c) Only (a) and (b) are true.
- (d) Only (b) and (c) are true.
- **23.** The matrix A has the values shown below. After factoring (without permuting the rows) the matrix A as A = L * U what is L?

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 4 & 5 & 6 \\ 7 & 8 & 9 \end{bmatrix}$$

(a)
$$L = \begin{bmatrix} 1 & 0 & 0 \\ 4 & 1 & 0 \\ 7 & 2 & 1 \end{bmatrix}$$

(b) $L = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -7 & -2 & 1 \end{bmatrix}$
(c) $L = \begin{bmatrix} 1 & 2 & 3 \\ 0 & -3 & -6 \\ 0 & 0 & 0 \end{bmatrix}$
(d) $L = \begin{bmatrix} 1 & 0 & 0 \\ -4 & 1 & 0 \\ -7 & 0 & 1 \end{bmatrix}$

- **24.** For a system of equations Ax = b, where A is 5 x 5 matrix, which of the following is TRUE when converting $A = (a_{i,j}), i = 1 \dots 5, j = 1 \dots 5$ to an upper triangular matrix? (Assume that no rows are permuted and $a_{i,j}$ is the element in the i-th row and j-th column of A.)
 - (a) $a_{1,1}$ is changed once.
 - (b) $a_{1,5}$ is changed once.
 - (c) $a_{3,3}$ is changed twice.
 - (d) $a_{3,5}$ is changed four times.
- **25.** Compute the determinant of the matrix P shown below.

$$P = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}$$

- **(a)** 0
- **(b)** 1
- (c) -1
- (d) 4

Extra Credit

Answering the question below correctly will add points to your exam total. Answering incorrectly or not answering will not add points to your exam total.

26. If A, B and C are $n \ge n$ non-singular matrices and b is an $n \ge 1$ vector, can the equation,

$$x = A^{-1} * (B^{-1} + C) * b$$

be solved without computing any matrix inverses?

- (a) No.
- (b) Yes, solve A * y = b for y then solve B * x = C * y for x.
- (c) Yes, solve B * y = b for y then solve A * x = C * b + y for x.
- (d) Yes, solve (B * A) * x = C * b for x.