No computers, calculators, or books allowed.

Choose closest solution.

You may take with you two "cheat sheets" - two sheets of size 8.5" x 11" or smaller.

- 1. True or False A permutation matrix merely reorders the components of a vector and does not change their values, so it preserves the vector 1-norm.
- 2. True or False A shortcoming of normal equations to solve the least square problems is that sensitivity of solution will worsen since $\operatorname{cond}(\mathbf{A}^T\mathbf{A}) = [\operatorname{cond}(\mathbf{A})]^2$
- 3. True or False The inverse of a tri-diagonal matrix is also tri-diagonal.
- **4.** True or False If **A** is symmetric and positive definite, then Gaussian elimination without pivoting applied to the linear system $\mathbf{A}\mathbf{x} = \mathbf{b}$ is backwards stable.
- **5.** True or False Initial value Ordinary Differential Equation problems always have unique solution
- **6.** True or False For a continuous function on a fixed interval, the interpolating polynomial based on equally spaced points always converges to the function as the number of interpolating points increases.
- 7. True or False The following loop terminates when x = 1.0.

```
x = 0.0;

while x = 1.0

x = x + 0.1;

disp(x)

end
```

- **8.** The product of the interval "numbers" [-2, 3]*[4, 5] is
 - (a) [8, 15]
 - **(b)** [-10, 15]
 - (c) [-12, 15]
 - (d) [-2, 5]

- **9.** The function $f: \mathbb{R} \to \mathbb{R}$ defined by $f(x) = x^4$ is
 - (a) a Bijection
 - (b) a Injection
 - (c) a Surjection
 - (d) none of the above

The following are "mathematically equivalent" expressions for $x \in [-1, 1)$:

(i)
$$\sqrt{1+x} - \sqrt{1-x}$$

(ii)
$$(\sqrt{1+x}/\sqrt{1-x}-1)(\sqrt{1-x})$$

(iii)
$$\frac{2x}{\sqrt{1+x} + \sqrt{1-x}}$$

- 10. Which of the following is true under IEEE double precision arithmetic?
 - (a) For x near 0, expression (i) will be typically more accurate.
 - (b) For x near 0, expression (ii) will be typically more accurate.
 - (c) For x near 0, expression (iii) will be typically more accurate.
 - (d) All three will produce same result for $|x| < \epsilon_{\text{mach}}$
- 11. Let $F(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}^n$ be a differentiable function and $J_F|_{\mathbf{x}}$ be its Jacobian evaluated at the point $\mathbf{x} \in \mathbb{R}^n$. Which of the following gives the first two terms of the Taylor series expansion of $F(\mathbf{y})$ about the point \mathbf{x} ?
 - (a) $F(\mathbf{y}) \approx F(\mathbf{x}) J_F|_{\mathbf{x}}(\mathbf{y} \mathbf{x})$
 - **(b)** $F(\mathbf{y}) \approx F(\mathbf{x}) + J_F|_{\mathbf{y}}(\mathbf{y} \mathbf{x})$
 - (c) $F(\mathbf{y}) \approx F(\mathbf{x}) + J_F|_{\mathbf{x}}(\mathbf{y} \mathbf{x})$
 - (d) $F(\mathbf{y}) \approx F(\mathbf{x}) + \frac{1}{2} J_F|_{\mathbf{x}} (\mathbf{y} \mathbf{x})$
- **12.** We approximate an infinitely differentiable function $f(x) : \mathbb{R} \to \mathbb{R}$ with a Taylor series until order 4 (5 terms) at x = 0. What is the maximum error for x near zero in Big O notation?
 - (a) $O(x^4)$
 - **(b)** $\mathcal{O}(x^5)$
 - (c) $O(x^6)$
 - (d) $\mathcal{O}(x^{10})$

- 13. The iterative solution using Newton's method to a find root of a system of non-linear equations is subject to
 - (a) round-off error
 - (b) truncation error
 - (c) none of these
 - (d) both 1 and 2
- 14. Consider the function

$$f(\mathbf{x}) = \begin{bmatrix} 3x_1^2 + 2x_2 \\ x_2 + 1 \end{bmatrix}.$$

Apply one iteration of Newton's method with initial guess $\mathbf{x}_0 = [1, 2]^\mathsf{T}$. What is \mathbf{x}_1 ?

- (a) $\left[\frac{7}{6}, 5\right]^{\mathsf{T}}$
- **(b)** $\left[\frac{5}{6}, -1\right]^{\mathsf{T}}$
- (c) $\left[\frac{7}{6}, -1\right]^{\mathsf{T}}$
- (d) $[\sqrt{\frac{2}{3}}, -1]^T$
- 15. Consider the function

$$f(x) = 1 - 3x^2$$

Apply one iteration of the secant method with initial guesses $x_0 = 0$ and $x_1 = 1$ What is x_2 ?

- (a) $-\frac{1}{3}$
- **(b)** 0
- (c) $\frac{1}{3}$
- (d) $\frac{5}{3}$
- 16. Which root finding method is the following algorithm representing
 - 1 initialize: $x_1 = \dots$
 - $2 \text{ for } k = 2, 3, \dots$
 - $3 x_k = x_{k-1} f(x_{k-1}) / f'(x_{k-1})$
 - 4 if converged, stop
 - 5 end
 - (a) Bisection method
 - (b) Secants method
 - (c) Newton's method

17.	What is one advantage of the bisection method over the secant method?
	(a) Assuming the initial interval brackets a root, the bisection method guaranteed to converge.
	(b) The bisection method has faster asymptotic convergence.
	(c) After the first iteration, the bisection method requires fewer new function evaluations.
	(d) Bisection method has no advantage over secant method
18.	Applying the Secant method to $f(x) = (x - 1)^2$ with initial guess $x_0 = 0$, what is the value of x after two iterations?
	(a) 1/2
	(b) 3/4
	(c) 1
	(d) Insufficient data to solve using secant method
19.	When applying Newton's method to find a solution to the following system of nonlinear equations $x_1 * x_2 = 0$ and $2x_1 + x_2 = 1$ with the starting value $[x_1 \ x_2]^T = [1 \ 1]^T$, what is the result of a single iteration?
	(a) $[1/2 \ 0]^T$ (b) $[0 \ 1]^T$ (c) $[1 \ 1]^T$ (d) $[0.5 \ 0.5]^T$
20.	Assume that we use a new root finding method. For this method, at the n^{th} step, the error is $1/n$. What is the convergence rate?
	(a) Cubic
	(b) Super linear
	(c) Quadratic
	(d) Sublinear
21.	LU decomposition reduces solving a general linear system to solving two systems.
	(a) Diagonal
	(b) Triangular
	(c) Orthogonal
	(d) Symmetric

22. What is the rank of the matrix

$$\begin{bmatrix} 1 & 2 & 3 \\ 1 & 2 & 3 \\ 1 & 2 & 3 \end{bmatrix}$$

- **(a)** 0
- **(b)** 1
- **(c)** 2
- (d) 3
- 23. Which of the following is the inverse of the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 2 \\ 2 & 2 & 1 \end{bmatrix}$$

(a)
$$\mathbf{A}^{-1} = \frac{1}{3} \begin{bmatrix} 3 & 0 & 0 \\ -2 & -1 & 2 \\ -2 & 2 & -1 \end{bmatrix}$$

(b)
$$\mathbf{A}^{-1} = \frac{1}{3} \begin{bmatrix} 3 & 0 & 1 \\ -2 & -1 & 2 \\ -2 & 2 & -1 \end{bmatrix}$$

(c)
$$\mathbf{A}^{-1} = \frac{1}{3} \begin{bmatrix} 3 & 1 & 0 \\ -2 & -1 & 2 \\ -2 & 2 & -1 \end{bmatrix}$$

(d)
$$\mathbf{A}^{-1} = \frac{1}{3} \begin{bmatrix} 3 & 0 & 0 \\ -2 & 2 & 2 \\ -2 & 3 & -1 \end{bmatrix}$$

- **24.** Let PA = LU be the LUP-factorization of A. Which of the following is always true?
 - (a) $\det \mathbf{A} = \det \mathbf{L}$
 - (b) $\det \mathbf{A} = \det \mathbf{U}$
 - (c) $\det \mathbf{A} = \pm \det \mathbf{L}$, where the sign depends on the matrix **P**
 - (d) $\det \mathbf{A} = \pm \det \mathbf{U}$, where the sign depends on the matrix \mathbf{P}

The next two questions concern the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 1 & 0 & 1 \end{bmatrix}$$

25. Let A = LU be the LU-factorization of A. What is L?

(a)
$$\mathbf{L} = \begin{bmatrix} -1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

(b)
$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & -1 \end{bmatrix}$$

(c)
$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -1 & 1 & 1 \end{bmatrix}$$

(d)
$$\mathbf{L} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

26. Let A = LU be the LU-factorization of A. What is U?

(a)
$$\mathbf{U} = \begin{bmatrix} -1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

(b)
$$\mathbf{U} = \begin{bmatrix} 1 & -1 & 1 \\ 0 & -1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

(c)
$$\mathbf{U} = \begin{bmatrix} 1 & 1 & -1 \\ 0 & 1 & -1 \\ 0 & 0 & 1 \end{bmatrix}$$

(d)
$$\mathbf{U} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

Use the following matrix **A** for the next 3 questions,

$$\mathbf{A} = \begin{bmatrix} 1 & 2 \\ -1 & 2 \end{bmatrix}$$

- **27.** What is the 2-norm of the matrix A?
 - (a) $\sqrt{2}$
 - **(b)** $2\sqrt{2}$
 - (c) $3\sqrt{2}$
 - **(d)** 2
- **28.** What is the 2-norm condition number of the matrix **A**?
 - (a) $\sqrt{2}$
 - **(b)** $2\sqrt{2}$
 - (c) $3\sqrt{2}$
 - **(d)** 2
- **29.** What are the singular values of the matrix A.
 - (a) 2 and 8
 - **(b)** 10 and 16
 - (c) $\sqrt{2}$ and $2\sqrt{2}$
 - (d) $\sqrt{2}$ and $3\sqrt{2}$
- **30.** Consider the matrix

$$\mathbf{A} = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 5 & 6 & 7 & 8 \\ 9 & 10 & 11 & 12 \\ 13 & 14 & 15 & 16 \end{bmatrix}.$$

If partial pivoting is used, what is the **value** of the first pivot element?

- **(a)** 1
- **(b)** 7
- **(c)** 13
- **(d)** 16

- **31.** Which of the following is true?
 - (a) The QR factorization of a matrix is unique
 - (b) The singular value decomposition of a matrix is unique
 - (c) The solution of linear least squares problem is unique
 - (d) If the null space of matrix A is zero, then the normal equations of the least square problem have a unique solution
- **32.** Consider $\mathbf{A} = \begin{bmatrix} 3 & 2 & 0 \\ 2 & 6 & 2 \\ 0 & 2 & 3 \end{bmatrix}$, $\mathbf{b} = \begin{bmatrix} 3 \\ 6 \\ 8 \end{bmatrix}$. Using Jacobi's iterative method to approximate the solution $\mathbf{A}\mathbf{x} = \mathbf{b}$ with a starting guess of

$$\mathbf{x}_0 = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
, what is \mathbf{x}_1 ?

- (a) $\begin{bmatrix} 2\\4/3\\2 \end{bmatrix}$
- $\mathbf{(b)} \quad \begin{bmatrix} 2\\2\\1 \end{bmatrix}$
- (c) $\begin{bmatrix} 1 \\ 0 \\ 3/2 \end{bmatrix}$
- (d) $\begin{bmatrix} 1/3 \\ 0 \\ 2 \end{bmatrix}$
- **33.** If a first-degree polynomial of the form $y = x_1 + x_2t$ is fit to the three data points $(t_i, y_i) = (1, 1), (2, 1), (3, 2)$ by linear least squares, what is the least squares solution?
 - (a) $x_1 = 1/3, x_2 = 1/2$
 - **(b)** $x_1 = 1, x_2 = 0$
 - (c) $x_1 = -1, x_2 = 1$
 - (d) $x_1 = 1/2, x_2 = 1/2$

34. Which matrix has the CSR representation

$$AA = \begin{bmatrix} 1 & 2 & 4 & 3 & 5 \end{bmatrix}$$

 $JA = \begin{bmatrix} 1 & 1 & 2 & 1 & 3 \end{bmatrix}$
 $IA = \begin{bmatrix} 1 & 2 & 4 & 6 \end{bmatrix}$

- (a) $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 4 & 0 \\ 3 & 0 & 5 \end{bmatrix}$
- **(b)** $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 2 & 4 \\ 0 & 3 & 5 \end{bmatrix}$
- $(c) \begin{bmatrix} 1 & 2 & 3 \\ 0 & 4 & 0 \\ 0 & 0 & 5 \end{bmatrix}$
- (d) $\begin{bmatrix} 1 & 0 & 2 \\ 0 & 4 & 0 \\ 3 & 5 & 0 \end{bmatrix}$
- **35.** Apply two iterations of normalized power method to the matrix

 $\mathbf{A} = \begin{bmatrix} 1 & 1 \\ 1 & 2 \end{bmatrix}$ using $x_0 = \begin{bmatrix} 1 \\ 2 \end{bmatrix}$ as starting vector. After normalization using the ∞ -norm, one entry of the resulting vector will be one. What is the value of the other entry?

- (a) 7/13
- **(b)** 8/13
- **(c)** 9/13
- **(d)** 10/13
- **36.** Consider Compressed Sparse Row (CSR) of the matrix $\mathbf{A} = \begin{bmatrix} 4 & 0 & 6 \\ 0 & 7 & 9 \\ 8 & 0 & 10 \end{bmatrix}$, what is IA?
 - (a) [1357]
 - **(b)** [2345]
 - (c) [3456]
 - **(d)** [5677]

- 37. Consider the following Matlab code
 - i = [2 5 3 4 4 5 1 3];
 - $j = [1 \ 1 \ 2 \ 2 \ 3 \ 3 \ 5 \ 5];$
 - $A = [1 \ 2 \ 3 \ 4 \ 5 \ 6 \ 7 \ 8];$
 - AA = sparse(i, j, A);

full(AA);

What is AA?

- $(a) \begin{bmatrix}
 0 & 0 & 0 & 7 & 0 \\
 0 & 1 & 0 & 0 & 0 \\
 0 & 3 & 0 & 0 & 8 \\
 0 & 4 & 0 & 0 & 5 \\
 2 & 0 & 6 & 0 & 0
 \end{bmatrix}$
- $(\mathbf{b}) \begin{bmatrix} 0 & 1 & 0 & 0 & 2 \\ 0 & 0 & 3 & 4 & 0 \\ 0 & 0 & 0 & 5 & 6 \\ 0 & 0 & 0 & 0 & 0 \\ 7 & 0 & 8 & 0 & 0 \end{bmatrix}$
- (d) $\begin{vmatrix} 0 & 1 & 0 & 0 & 2 \\ 0 & 3 & 0 & 4 & 0 \\ 0 & 0 & 5 & 0 & 6 \\ 0 & 0 & 0 & 0 & 0 \\ 0 & 7 & 8 & 0 & 0 \end{vmatrix}$
- **38.** When interpolating a distinct data set of 7 values, the degree of a Lagrange basis function used in interpolation is
 - (a) 4
 - **(b)** 5
 - **(c)** 6
 - (d) 7

- **39.** The Newton form of the quadratic interpolant of $f(x) = \frac{12}{2+x}$ using x = 0, 1, 2 is
 - (a) $p_2(x) = 6 2x + 1/2x(x-1)$
 - **(b)** $p_2(x) = 6 4x + 3x(x-1)$
 - (c) $p_2(x) = 6 2x + 3/2x(x-1)$
 - (d) $p_2(x) = 6x(x-1) 2x + 1/2$
- **40.** The computational cost of evaluating a polynomial of degree n using Horner's method is
 - (a) $O(n^{1/2})$
 - **(b)** O(n)
 - (c) $O(n^2)$
 - (d) $O(n^3)$
- **41.** Approximate $\int_0^2 f(x)dx$ using Trapezoid rule, given that f(0) = 1 and f(2) = 6.
 - (a) 3.5
 - **(b)** 7
 - (c) 4
 - (d) 5
- **42.** Approximate $\int_0^2 f(x)dx$ using Simpson's rule, given that f(0) = 1, f(1) = 2 and f(2) = 6.
 - **(a)** 3.5
 - **(b)** 7
 - (c) 4
 - (d) 5
- **43.** Approximate the integral $\int_{-1}^{1} x^3 dx$ using two point Gaussian quadrature. (the Gaussian nodes are $\pm \frac{1}{\sqrt{3}}$ and the corresponding weights are both 1)
 - (a) $2\left(\frac{\sqrt{3}}{3}\right)^3$
 - **(b)** $-2\left(\frac{\sqrt{3}}{3}\right)^3$
 - **(c)** 0
 - (d) $\frac{2}{\sqrt{3}}$

44. Which of the following has the best error bound if the intervals are small enough?

- (a) Composite Trapezoid rule
- (b) Composite Simpson's 1/3 rule
- (c) Composite Simpson's 3/8 rule
- (d) Composite Boole's rule

45. Which of the following values of k makes $y = 1000e^{kt}$ go to zero if $t \to \infty$.

- (a) 2
- **(b)** 1
- **(c)** 0
- (d) -1

46. What is the value of the first step z_1 of the forward Euler method for the following problem with initial condition $z_0 = \begin{bmatrix} 1 \\ 0 \\ 1 \end{bmatrix}$ and time step 0.1? $z' = \begin{bmatrix} 1 & 0 & 2 \\ 0 & 1 & 0 \\ 1 & 1 & 1 \end{bmatrix} z$

- $\mathbf{(a)} \quad \begin{bmatrix} 0.4\\0\\0.3 \end{bmatrix}$
- (b) $\begin{bmatrix} 0.3 \\ 0 \\ 0.2 \end{bmatrix}$
- (c) $\begin{bmatrix} 1.39 \\ 0 \\ 1.29 \end{bmatrix}$
- $\mathbf{(d)} \begin{bmatrix} 1.3 \\ 0 \\ 1.2 \end{bmatrix}$

47. Consider
$$\frac{d\mathbf{y}(t)}{dt} = \begin{bmatrix} 1 & 0 & 2 \\ 1 & 1 & 1 \\ 2 & 0 & 1 \end{bmatrix} * \mathbf{y}(t)$$
, what is the Taylor series for \mathbf{y} around $t_0 = 0$ where $\mathbf{y}(0) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$?

(a)
$$\mathbf{y}(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T + t \begin{bmatrix} 3 & 3 & 3 \end{bmatrix}^T + t^2 \begin{bmatrix} 4.5 & 4.5 & 4.5 \end{bmatrix}^T + \cdots$$

(b)
$$\mathbf{y}(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T + t \begin{bmatrix} 3 & 3 & 3 \end{bmatrix}^T + t^2 \begin{bmatrix} 3 & 3 & 3 \end{bmatrix}^T + \cdots$$

(c)
$$\mathbf{y}(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T + t \begin{bmatrix} 1 & 2 & 3 \end{bmatrix}^T + t^2 \begin{bmatrix} 1.5 & 1.5 & 1.5 \end{bmatrix}^T + \cdots$$

(d)
$$\mathbf{y}(t) = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T + t^2 \begin{bmatrix} 3 & 3 & 3 \end{bmatrix}^T + t^4 \begin{bmatrix} 4 & 3 & 1 \end{bmatrix}^T + \cdots$$

48. Let
$$B = \begin{bmatrix} 0 & 0 & 0.1 \\ 0.1 & 0 & 0 \\ 0 & 0.1 & 0 \end{bmatrix}$$
, which one is closest to e^B ?

(a)
$$\begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 0 & 0 & 0.1 \\ 0.1 & 0 & 0 \\ 0 & 0.1 & 0 \end{bmatrix}$$
(c)
$$\begin{bmatrix} 1 & 0 & 0.1 \\ 0.1 & 1 & 0 \\ 0 & 0.1 & 1 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 1 & 0 & 0.1 \\ 0.1 & 1 & 0 \\ 0 & 0.1 & 1 \end{bmatrix}$$

(d)
$$\begin{bmatrix} e & 0 & 0 \\ 0 & e & 0 \\ 0 & 0 & e \end{bmatrix}$$

- **49.** Consider $\mathbf{y}' = \mathbf{A}\mathbf{y}$ and the diagonalization of A is $D = S^{-1}\mathbf{A}S$, what can you say about the eigenvalues of the matrix A?
 - (a) The eigenvalues of **A** are the same as the eigenvalues of D^TD .
 - (b) The eigenvalues of \mathbf{A} are the same as the eigenvalues of S.
 - (c) The eigenvalues of **A** are the same as the eigenvalues of S^{-1} .
 - (d) The eigenvalues of \mathbf{A} are the same as the eigenvalues of D.

50. Consider

$$x' = xy + 2$$

$$y' = z + x$$

$$z' = x + y + z$$

If $[x_0 \ y_0 \ z_0]^T = [1 \ 1 \ 1]^T$ and time step is 0.1 what is the next step of forward Euler?

- (a) $[1.1 \ 1.1 \ 1.1]^T$
- **(b)** $[0.7 \ 0.8 \ 0.7]^T$
- (c) $[1.3 \ 1.2 \ 1.3]^T$
- (d) $[0.3 \ 0.2 \ 0.3]^T$