
Rounding errors

Example
Show demo: “Waiting for 1”.
Determine the double-precision machine representation for 0.1

0.1 = 0.000110011 0011… & = 1.100110011… &×2)*

+ = 100110011… 00110011010

, = −4

/ = , + 1023 = 1019 = 01111111011 &

3 = 0#×5 Integer
part

Fractional
part

0.2 0 0.2

0.4 0 0.4

0.8 0 0.8

1.6 1 0.6

1.2 1 0.2

0.4 0 0.4

0.8 0 0.8

1.6 1 0.6

1.2 1 0.2

0 01111111011 10011…0011…0011010

(52-bit)

Roundoff error in its basic form!

Machine floating point number
• Not all real numbers can be exactly represented as a machine floating-point

number.
• Consider a real number in the normalized floating-point form:

! = ±1. &'&(&) …&+ …× 2.
• The real number ! will be approximated by either !/ or !0, the nearest two

machine floating point numbers.

!!/ !00 +∞

!/ = 1. &'&(&) …&+× 2. (rounding by chopping)

! = 1. &'&(&) …&+ …× 2.Exact number:

Without loss of generality, let’s see what happens when trying to represent a positive
machine floating point number:

!0 = 1. &'&(&) …&+× 2.+ 0.000…01× 2.
4.

!!" !#0 +∞

!" = 1. *+*,*- …*/× 22
! = 1. *+*,*- …*/ …× 22Exact number:

!# = 1. *+*,*- …*/× 22+ 0.000…01× 22
32

Gap between !# and !": !# − !" = 32 × 22

Examples for single precision:
!# and !" of the form 5 × 2"+6: !# − !" = 2"--≈ 10"+6
!# and !" of the form 5 × 29: !# − !" = 2"+:≈ 2× 10";
!# and !" of the form 5 × 2,6: !# − !" = 2"-≈ 0.125
!# and !" of the form 5 × 2;6: !# − !" = 2-=≈ 10++

The interval between successive floating point numbers is not uniform: the interval is smaller as the
magnitude of the numbers themselves is smaller, and it is bigger as the numbers get bigger.

Gap between two successive machine floating point numbers

A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.
1.00 (×27 = 1
1.01 (×27 = 1.25
1.10 (×27 = 1.5
1.11 (×27 = 1.75

1.00 (×2:' = 0.5
1.01 (×2:' = 0.625
1.10 (×2:' = 0.75
1.11 (×2:' = 0.875

1.00 (×2' = 2
1.01 (×2' = 2.5
1.10 (×2' = 3.0
1.11 (×2' = 3.5

1.00 (×2(= 4.0
1.01 (×2(= 5.0
1.10 (×2(= 6.0
1.11 (×2(= 7.0

1.00 (×2> = 8.0
1.01 (×2> = 10.0
1.10 (×2> = 12.0
1.11 (×2> = 14.0

1.00 (×2? = 16.0
1.01 (×2? = 20.0
1.10 (×2? = 24.0
1.11 (×2? = 28.0

1.00 (×2:(= 0.25
1.01 (×2:(= 0.3125
1.10 (×2:(= 0.375
1.11 (×2:(= 0.4375

1.00 (×2:> = 0.125
1.01 (×2:> = 0.15625
1.10 (×2:> = 0.1875
1.11 (×2:> = 0.21875

1.00 (×2:? = 0.0625
1.01 (×2:? = 0.078125
1.10 (×2:? = 0.09375
1.11 (×2:? = 0.109375

Rounding
The process of replacing ! by a nearby machine number is called
rounding, and the error involved is called roundoff error.

Round to nearest: either round up or round down, whichever is closer

!!" !#0 +∞!!# !"−∞

Round
towards
+∞

Round
towards
−∞

Round
towards
zero

Round
towards
zero

! is positive number ! is negative number

Round up (ceil) () ! = !#
Rounding towards +∞

() ! = !"
Rounding towards zero

Round down (floor) () ! = !"
Rounding towards zero

() ! = !#
Rounding towards −∞

Round by chopping: () ! = !"

Rounding (roundoff) errors
Consider rounding by chopping:

• Absolute error:

!l($) − $ ≤ $(− $) = +, × 2,

!l($) − $ ≤ +, × 2,

• Relative error:

!l($) − $
$ ≤ +, × 2,

1. 121314 …16 …× 2,

!l($) − $
$ ≤ +,

Rounding (roundoff) errors

Single precision: Floating-point
math consistently introduces relative
errors of about 10#$. Hence, single
precision gives you about 7
(decimal) accurate digits.

%# %&

'% − %
|%| ≤ 2#,-≈ 1.2×10#$ '% − %

|%| ≤ 2#1,≈ 2.2×10#23

% = 1. 525,5- …57 …× 28

Double precision: Floating-point
math consistently introduces
relative errors of about 10#23.
Hence, double precision gives you
about 16 (decimal) accurate digits.

Iclicker question
Assume you are working with IEEE single-precision numbers. Find the smallest
number ! that satisfies

2# + ! ≠ 2#

A) 2()*+,
B) 2()*..
C) 2(0.
D) 2()0
E) 2(#

Demo

Floating point arithmetic (basic idea)

• First compute the exact result
• Then round the result to make it fit into the desired precision

• ! + # = %& ! + #

• ! × # = %& ! × #

! = (−1), 1. . × 20 = , 1 .

Floating point arithmetic
Consider a number system such that ! = ±1. &'&(&)×2,
for - ∈ [−4,4] and &4 ∈ {0,1}.

8 = 1.101 (×2'
& = 1.001 (×2'

Rough algorithm for addition and subtraction:
1. Bring both numbers onto a common exponent
2. Do “grade-school” operation
3. Round result

9 = 8 + & = 10.110 (×2' = 1.011 (×2(

• Example 1: No rounding needed

Floating point arithmetic
Consider a number system such that ! = ±1. &'&(&)×2,
for - ∈ [−4,4] and &4 ∈ {0,1}.

8 = 1.101 (×29
& = 1.000 (×29

: = 8 + & = 10.101 (×29 ≈ 1.010 (×2'

• Example 2: Require rounding

8 = 1.100 (×2'
& = 1.100 (×2='

: = 8 + & = 1.100 (×2' + 0.011 (×2' = 1.111 (×2'

• Example 3:

Mathematical properties of FP operations
Not necessarily associative:
For some ! , #, $ the result below is possible:

! + # + $ ≠ ! + (# + $)

Not necessarily distributive:
For some ! , #, $ the result below is possible:

$! + # ≠ $! + $ #
Not necessarily cumulative:
Repeatedly adding a very small number to a large number may do
nothing Demo: FP-arithmetic

Floating point arithmetic
Consider a number system such that ! = ±1. &'&(&)&*×2-
for . ∈ [−4,4] and &5 ∈ {0,1}.

9 = 1.1011 (×2'
& = 1.1010 (×2'

: = 9 − & = 0.0001 (×2'

• Example 4:

Or after normalization: : = 1. ? ? ? ? (×2<)

Unfortunately there is not data to indicate what the missing digits
should be. The effect is that the number of significant digits in the
result is reduced. Machine fills them with its best guess, which is
often not good (usually what is called spurious zeros). This
phenomenon is called Catastrophic Cancellation.

https://en.wikipedia.org/wiki/Significant_digit

Cancellation
! = 1. !%!&!'!(!)!* …!, …×2/%
0 = 1. 0%0&0'0(0)0* …0, …×2/&

Suppose ! ≈ 0 and single precision (without loss of generality)

! = 1. !%!&!'!(!)!* …!&2!&%10!&(!&)!&*!&4 … ×2/

0 = 1. !%!&!'!(!)!* …!&2!&%110&(0&)0&*0&4 …×2/

56(0 − !) = 0.0000…0001×2/ = 1. ? ? ? ? ? ?… ? ?×2;,</

56 0 − ! = 1.000…00×2;,</

Lost due to
rounding

Not significant bits (precision lost, not due to 56(0 − !) but due to
rounding of a, 0 from the beginning

Example of cancellation:

Cancellation
! = 1. !%!&!'!(!)!* …!, …×2/%
0 = 1. 0%0&0'0(0)0* …0, …×2/&

For example, assume single precision and 11 = 12 + 18 (without loss of
generality), i.e. ! ≫ 0

56(!) = 1. !%!&!'!(!)!* …!&&!&'×2/9%:

56(0) = 1. 0%0&0'0(0)0* …0&&0&'×2/

1. !%!&!'!(!)!* …!&&!&'×2/9%:
0.0000…0010%0&0'0(0)×2/9%:+

In this example, the result 56 ! + 0 only included 6 bits of precision from
56(0). Lost precision!

Loss of Significance

How can we avoid this loss of significance? For example, consider the
function ! " = "$ + 1 − 1

If we want to evaluate the function for values " near zero, there is a
potential loss of significance in the subtraction.

For example, if " = 10)* and we use five-decimal-digit arithmetic
! 10)* = (10)*)$ + 1 − 1 = 0

How can we fix this issue?

Loss of Significance

Re-write the function as ! " = $%
$%&'(' (no subtraction!)

Evaluate now the function for " = 10(+ using five-decimal-digit
arithmetic

! 10(+ = ('-./)%
('-./)%&'(' =

'-.1
2

Example:
If x = 0.3721448693 and y = 0.3720214371 what is the relative error in the computation of
(x − y) in a computer with five decimal digits of accuracy?

Using five decimal digits of accuracy, the numbers are rounded as:
1l(x) = 0.37214 and	1l(y) = 0.37202

Then the subtraction is computed:
1l x − 1l(y) = 0.37214 − 0.37202 = 0.00012

The result of the operation is: 1l x − y = 1.20000 ×1089 (the last digits are filled with spurious
zeros)
The relative error between the exact and computer solutions is given by

x − y − 1l x − y
| x − y | = 0.0001234322 − 0.00012

0.000123432 = 0.0000034322
0.000123432 ≈ 3×1089

Note that the magnitude of the error due to the subtraction is large when compared with the relative
error due to the rounding

|x − 1l x |
|x| ≈ 1.3×108<

