Floating point representation

The numbers are stored with a fixed number of bits for the integer part and a fixed number of bits for the fractional part.

Suppose we have 8 bits to store a real number, where 5 bits store the integer part and 3 bits store the fractional part:

<u>Smallest number: $(00000.001)_2 = 0.125$ </u>

<u>Largest number:</u> $(11111.111)_2 = 31.875$

Suppose we have 64 bits to store a real number, where 32 bits store the integer part and 32 bits store the fractional part:

$$(a_{31} \dots a_2 a_1 a_0, b_1 b_2 b_3 \dots b_{32})_2 = \sum_{k=0}^{31} a_k 2^k + \sum_{k=1}^{32} b_k 2^{-k}$$

$$= a_{31} \times 2^{31} + a_{30} \times 2^{30} + \dots + a_0 \times 2^0 + b_1 \times 2^{-1} + b_2 \times 2^2 + \dots + b_{32} \times 2^{-32}$$

Smallest number:

$$a_i = 0 \ \forall i \text{ and } b_1, b_2, \dots, b_{31} = 0 \text{ and } b_{32} = 1 \ \rightarrow 2^{-32} \approx 10^{-10}$$

Largest number: $a_i = 1 \forall i \text{ and } b_i = 1 \forall i \rightarrow 2^{31} + \dots + 2^0 + 2^{-1} + \dots + 2^{-32} \approx 10^9$

Suppose we have 64 bits to store a real number, where 32 bits store the integer part and 32 bits store the fractional part:

$$(a_{31} \dots a_2 a_1 a_0, b_1 b_2 b_3 \dots b_{32})_2 = \sum_{k=0}^{31} a_k 2^k + \sum_{k=1}^{32} b_k 2^{-k}$$

<u>Smallest number</u> → $\approx 10^{-10}$ <u>Largest number</u> → $\approx 10^{9}$

ſ	J	
l	J	

 ∞

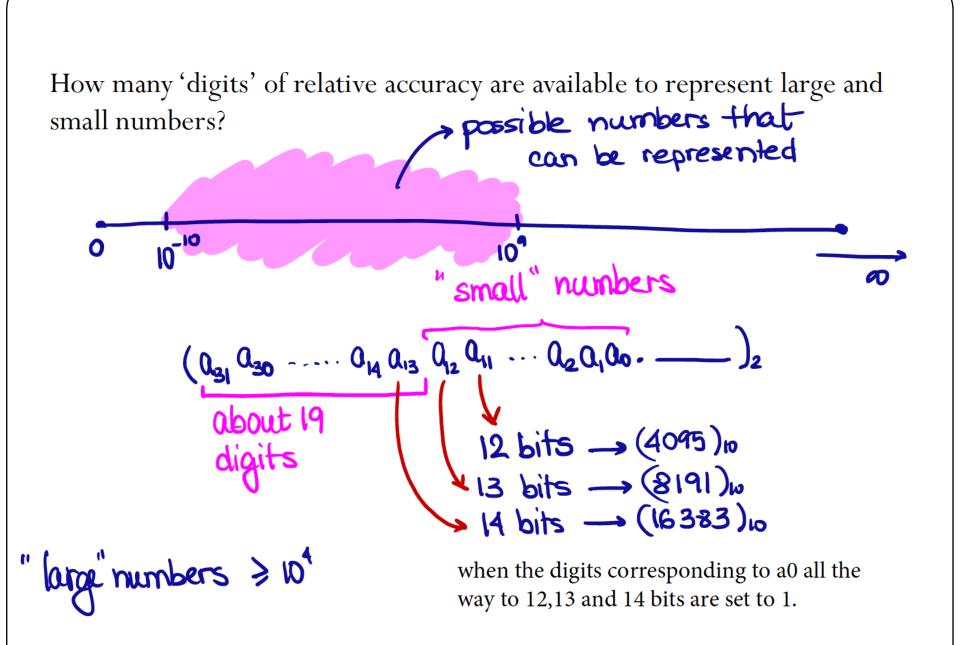
Range: difference between the largest and smallest numbers possible. More bits for the integer part \rightarrow increase range

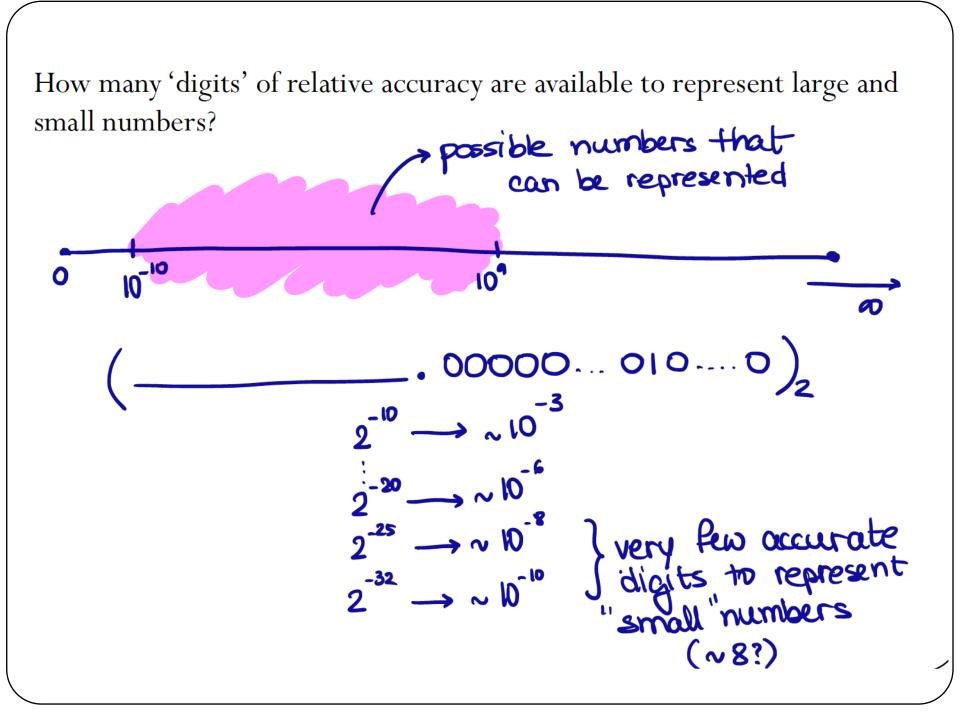
Precision: smallest possible difference between any two numbers More bits for the fractional part \rightarrow increase precision

$$(a_2a_1a_0, b_1b_2b_3)_2$$
 OR $(a_1a_0, b_1b_2b_3b_4)_2$

Wherever we put the binary point, there is a trade-off between the amount of range and precision. It can be hard to decide how much you need of each!

Fix: Let the binary point "float"





Floating-point numbers

A floating-point number can represent numbers of different order of magnitude (very large and very small) with the same number of fixed digits.

In general, in the binary system, a floating number can be expressed as

$$x = \pm q \times 2^m$$

q is the significand, normally a fractional value in the range [1.0,2.0)

m is the exponent

Floating-point numbers

Numerical Form:

$$x = \pm q \times 2^m = \pm b_0 \cdot b_1 b_2 b_3 \dots b_n \times 2^m$$

Fractional part of significand (*n* digits)

 $b_i \in \{0,1\}$ Exponent range: $m \in [L, U]$ Precision: p = n + 1

"Floating" the binary point

$$(1011.1)_2 = 1 \times 8 + 0 \times 4 + 1 \times 2 + 1 \times 1 + 1 \times \frac{1}{2} = (11.5)_{10}$$

 $(10111)_2 = 1 \times 16 + 0 \times 8 + 1 \times 4 + 1 \times 2 + 1 \times 1 = (23)_{10}$
 $= (1011.1)_2 \times 2^1 = (23)_{10}$
 $(101.11)_2 = 1 \times 4 + 0 \times 2 + 1 \times 1 + 1 \times \frac{1}{2} + 1 \times \frac{1}{4} = (5.75)_{10}$
 $= (1011.1)_2 \times 2^{-1} = (5.75)_{10}$

Move "binary point" to the left by one bit position: Divide the decimal number by 2 Move "binary point" to the right by one bit position: Multiply the decimal number by 2

Converting floating points

Convert $(39.6875)_{10} = (100111.1011)_2$ into floating point representation

$$(39.6875)_{10} = (100111.1011)_2 = (1.001111011)_2 \times 2^5$$

Normalized floating-point numbers

Normalized floating point numbers are expressed as

$$x = \pm 1.b_1b_2b_3...b_n \times 2^m = \pm 1.f \times 2^m$$

where f is the fractional part of the significand, m is the exponent and $b_i \in \{0,1\}$.

Hidden bit representation:

The first bit to the left of the binary point $b_0 = 1$ does not need to be stored, since its value is fixed. This representation "adds" 1-bit of precision (we will show some exceptions later, including the representation of number **zero**).

Iclicker question

Determine the normalized floating point representation $1. f \times 2^m$ of the decimal number x = 47.125 (f in binary representation and m in decimal)

A) $(1.01110001)_2 \times 2^5$ B) $(1.01110001)_2 \times 2^4$ C) $(1.01111001)_2 \times 2^5$ D) $(1.01111001)_2 \times 2^4$

Normalized floating-point numbers

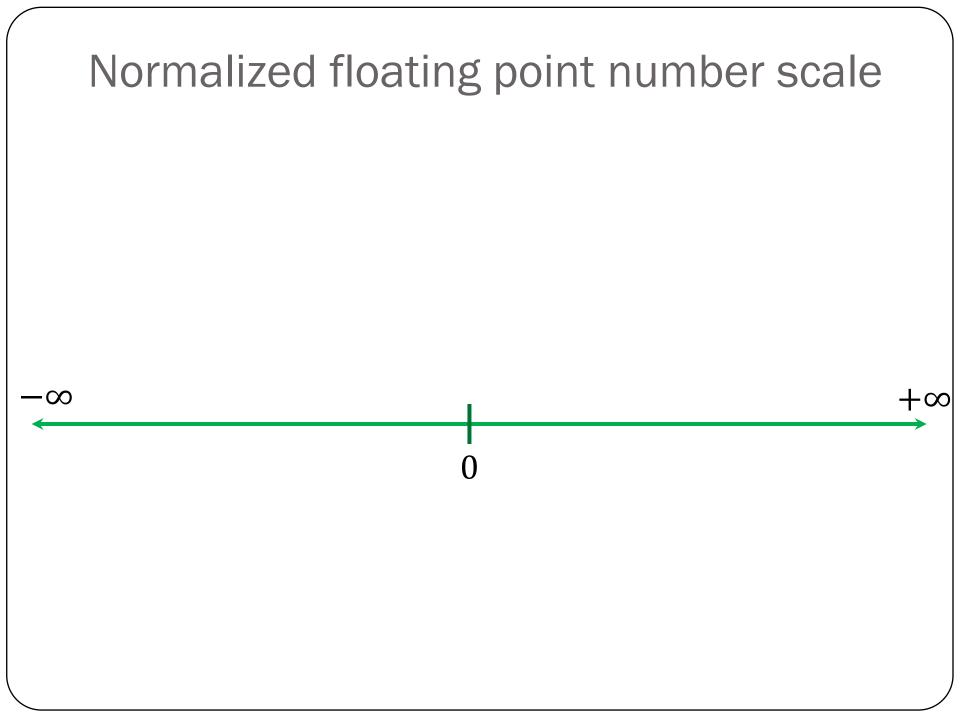
 $x = \pm q \times 2^m = \pm 1. b_1 b_2 b_3 \dots b_n \times 2^m = \pm 1. f \times 2^m$

- Exponent range: [L, U]
- Precision: p = n + 1
- Smallest positive normalized FP number:

$$\mathbf{UFL} = 2^L$$

• Largest positive normalized FP number:

$$OFL = 2^{U+1}(1 - 2^{-p})$$



Floating-point numbers: Simple example

A "toy" number system can be represented as $x = \pm 1. b_1 b_2 \times 2^m$ for $m \in [-4,4]$ and $b_i \in \{0,1\}$.

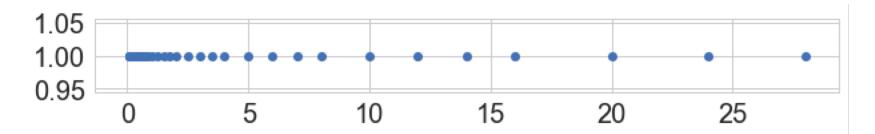
$(1.00)_2 \times 2^0 = 1$	$(1.00)_2 \times 2^1 = 2$	$(1.00)_2 \times 2^2 = 4.0$
$(1.01)_2 \times 2^0 = 1.25$	$(1.01)_2 \times 2^1 = 2.5$	$(1.01)_2 \times 2^2 = 5.0$
$(1.10)_2 \times 2^0 = 1.5$	$(1.10)_2 \times 2^1 = 3.0$	$(1.10)_2 \times 2^2 = 6.0$
$(1.11)_2 \times 2^0 = 1.75$	$(1.11)_2 \times 2^1 = 3.5$	$(1.11)_2 \times 2^2 = 7.0$
	~ / L	~ ~ 2

 $\begin{array}{ll} (1.00)_2 \times 2^3 = 8.0 & (1.00)_2 \times 2^4 = 16.0 & (1.00)_2 \times 2^{-1} = 0.5 \\ (1.01)_2 \times 2^3 = 10.0 & (1.01)_2 \times 2^4 = 20.0 & (1.01)_2 \times 2^{-1} = 0.625 \\ (1.10)_2 \times 2^3 = 12.0 & (1.10)_2 \times 2^4 = 24.0 & (1.10)_2 \times 2^{-1} = 0.75 \\ (1.11)_2 \times 2^3 = 14.0 & (1.11)_2 \times 2^4 = 28.0 & (1.11)_2 \times 2^{-1} = 0.875 \end{array}$

 $\begin{array}{ll} (1.00)_2 \times 2^{-2} = 0.25 & (1.00)_2 \times 2^{-3} = 0.125 & (1.00)_2 \times 2^{-4} = 0.0625 \\ (1.01)_2 \times 2^{-2} = 0.3125 & (1.01)_2 \times 2^{-3} = 0.15625 & (1.01)_2 \times 2^{-4} = 0.078125 \\ (1.10)_2 \times 2^{-2} = 0.375 & (1.10)_2 \times 2^{-3} = 0.1875 & (1.10)_2 \times 2^{-4} = 0.09375 \\ (1.11)_2 \times 2^{-2} = 0.4375 & (1.11)_2 \times 2^{-3} = 0.21875 & (1.11)_2 \times 2^{-4} = 0.109375 \end{array}$

Same steps are performed to obtain the negative numbers. For simplicity, we will show only the positive numbers in this example.

 $x = \pm 1. b_1 b_2 \times 2^m$ for $m \in [-4,4]$ and $b_i \in \{0,1\}$



- Smallest normalized positive number: $(1.00)_2 \times 2^{-4} = 0.0625$
- Largest normalized positive number:

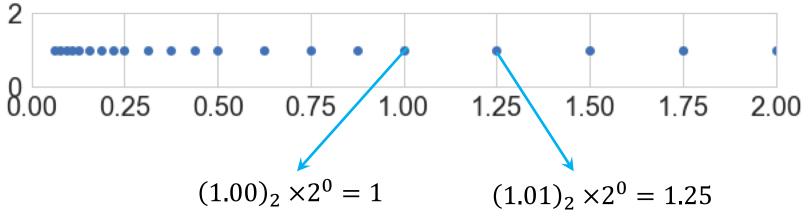
$$(1.11)_2 \times 2^4 = 28.0$$

- Any number *x* closer to zero than **0.0625** would UNDERFLOW to zero.
- Any number x outside the range -28.0 and +28.0 would OVERFLOW to infinity.

Machine epsilon

• Machine epsilon (ϵ_m) : is defined as the distance (gap) between 1 and the next larger floating point number.

 $x = \pm 1. b_1 b_2 \times 2^m$ for $m \in [-4,4]$ and $b_i \in \{0,1\}$

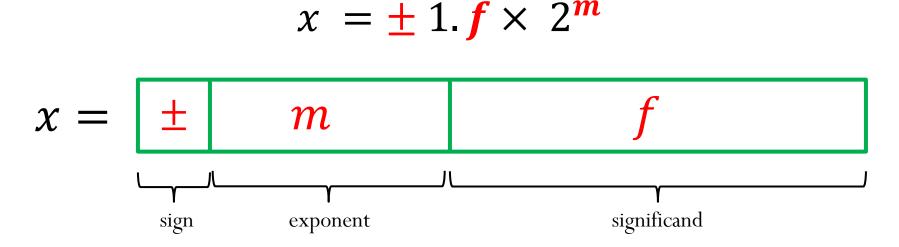


$$\epsilon_m = (0.01)_2 \times 2^0 = 0.25$$

Machine numbers: how floating point numbers are stored?

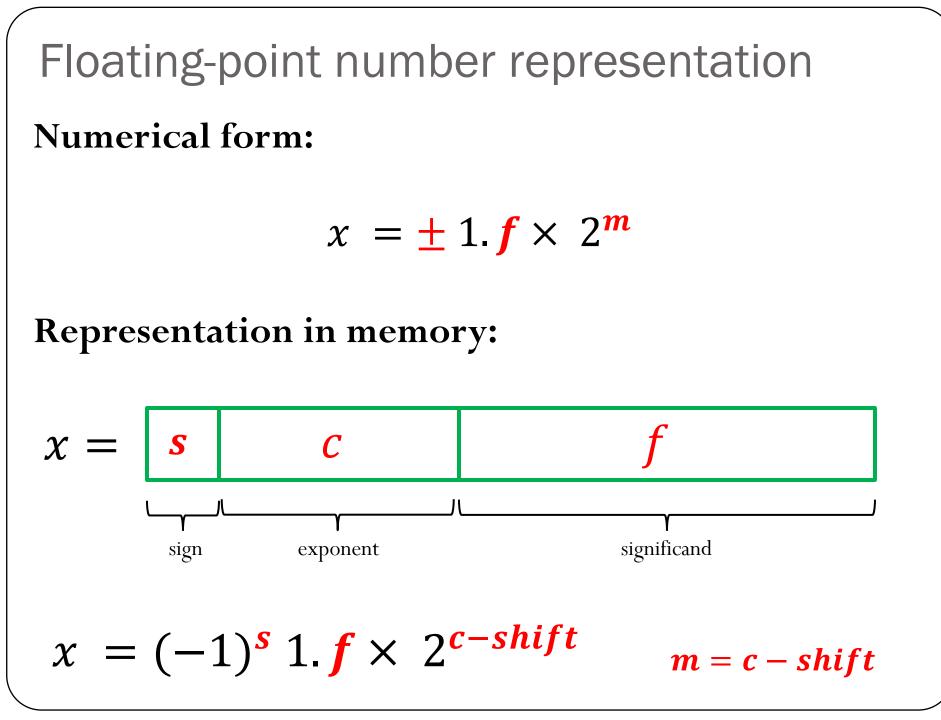
Floating-point number representation

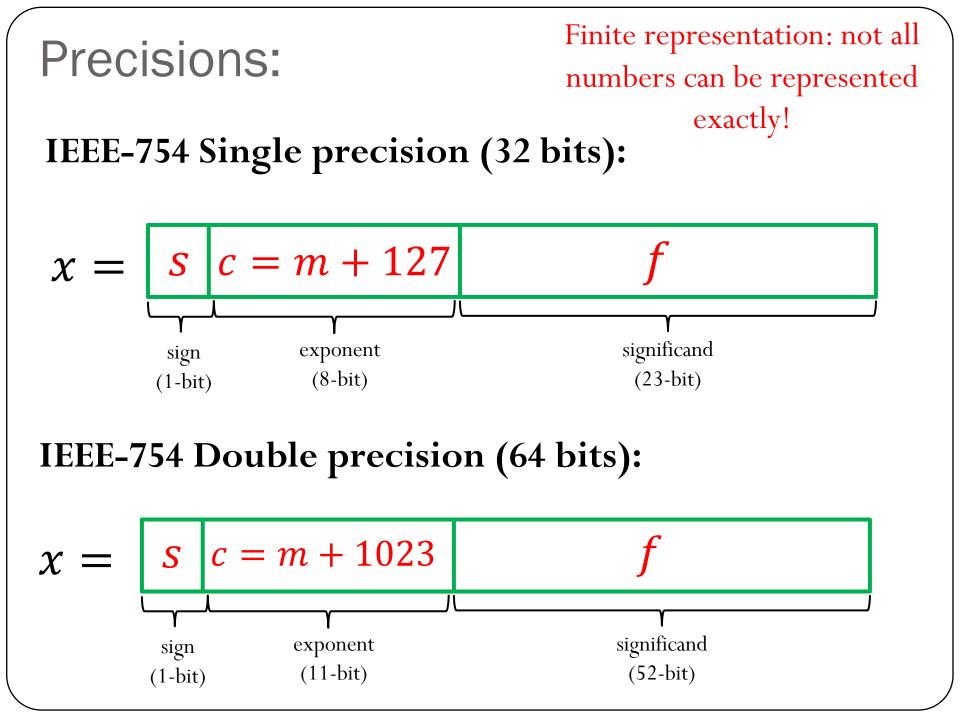
What do we need to store when representing floating point numbers in a computer?



Initially, different floating-point representations were used in computers, generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard representation for floating-point number: IEEE (Institute of Electrical and Electronics Engineers) 754 Standard.





Special Values:

$$x = (-1)^{s} 1.f \times 2^{m} = s \quad c \quad f$$
1) Zero:

$$x = s \quad 000 \dots 000 \quad 0000 \dots \dots 0000$$
2) Infinity: $+\infty (s = 0)$ and $-\infty (s = 1)$

$$x = s \quad 111 \dots 111 \quad 0000 \dots \dots 0000$$
3) NaN: (results from operations with undefined results)

$$x = s \quad 111 \dots 111 \quad anything \neq 00 \dots 00$$
Note that the exponent $c = (000 \dots 000)$ and $c = (111 \dots 111)$ are reserved for these special cases, which limits the exponent range for the other numbers.

IEEE-754 Single Precision (32-bit)

 $x = (-1)^{\mathbf{s}} 1.\mathbf{f} \times 2^{\mathbf{m}}$



s = 0: positive sign, s = 1: negative sign

Reserved exponent number for special cases: $c = (1111111)_2 = 255$ and $c = (0000000)_2 = 0$

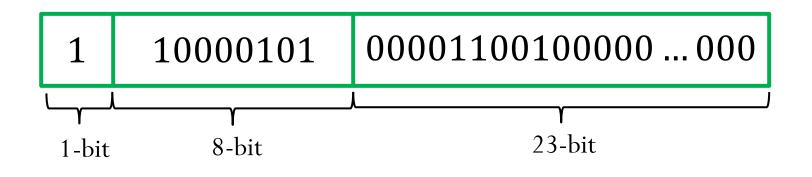
Therefore 0 < c < 255The largest exponent is U = 254 - 127 = 127The smallest exponent is L = 1 - 127 = -126

IEEE-754 Single Precision (32-bit)

 $x = (-1)^{\mathbf{s}} 1.\mathbf{f} \times 2^{\mathbf{m}}$

Example: Represent the number x = -67.125 using IEEE Single-Precision Standard

 $67.125 = (1000011.001)_2 = (1.000011001)_2 \times 2^6$ $c = 6 + 127 = 133 = (10000101)_2$



IEEE-754 Single Precision (32-bit)

$$x = (-1)^{s} 1 f \times 2^{m} = s c f c = m + 127$$

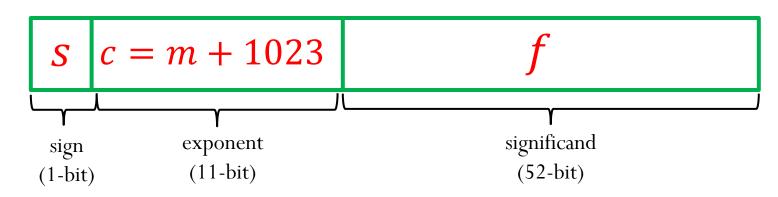
• Machine epsilon (ϵ_m) : is defined as the distance (gap) between 1 and the next larger floating point number.

$$\epsilon_m = 2^{-23} \approx 1.2 \times 10^{-7}$$

- Smallest positive normalized FP number: $UFL = 2^{L} = 2^{-126} \approx 1.2 \times 10^{-38}$
- Largest positive normalized FP number: $OFL = 2^{U+1}(1 - 2^{-p}) = 2^{128}(1 - 2^{-24}) \approx 3.4 \times 10^{38}$

IEEE-754 Double Precision (64-bit)

$$x = (-1)^{\mathbf{s}} 1.\mathbf{f} \times 2^{\mathbf{m}}$$



s = 0: positive sign, s = 1: negative sign

Reserved exponent number for special cases: $c = (1111111111)_2 = 2047$ and $c = (0000000000)_2 = 0$

Therefore 0 < c < 2047The largest exponent is U = 2046 - 1023 = 1023The smallest exponent is L = 1 - 1023 = -1022

IEEE-754 Double Precision (64-bit) $x = (-1)^{s} 1 f \times 2^{m} = s c f c = m + 1023$

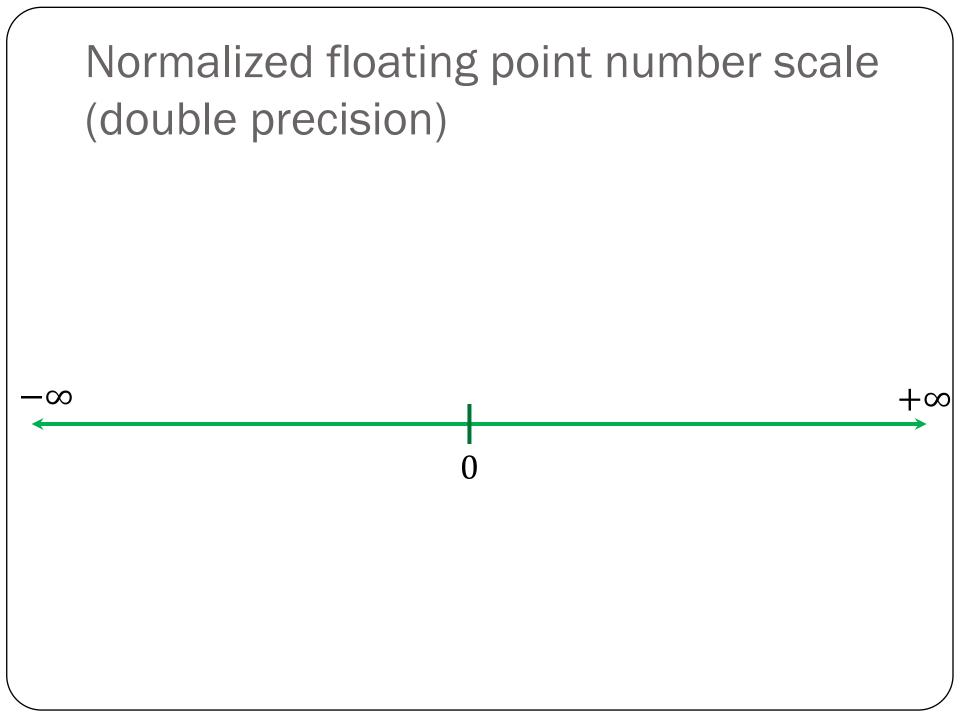
• Machine epsilon (ϵ_m) : is defined as the distance (gap) between 1 and the next larger floating point number.

$$(1)_{10} = 0$$
 0111...111 00000000000...00000000

$$(1)_{10} + \epsilon_m = 0$$
 0111...111 00000000000...00000001

$$\boldsymbol{\epsilon_m} = \mathbf{2^{-52}} \approx 2.2 \times 10^{-16}$$

- Smallest positive normalized FP number: $UFL = 2^{L} = 2^{-1022} \approx 2.2 \times 10^{-308}$
- Largest positive normalized FP number: $OFL = 2^{U+1}(1 - 2^{-p}) = 2^{1024}(1 - 2^{-53}) \approx 1.8 \times 10^{308}$



Subnormal (or denormalized) numbers

- Noticeable gap around zero, present in any floating system, due to normalization
 - $\checkmark~$ The smallest possible significand is 1.00
 - ✓ The smallest possible exponent is L
- Relax the requirement of normalization, and allow the leading digit to be zero, only when the exponent is at its minimum (m = L)
- Computations with subnormal numbers are often slow.

Representation in memory (another special case):

$$x = s \ c = 000 \dots 000 \ f$$

Numerical value:

$$x = (-1)^{s} 0.f \times 2^{L}$$

Note that this is a special case, and the exponent m is **not** evaluated as m = c - shift = -shift. Instead, the exponent is set to the lower bound, m = L

Subnormal (or denormalized) numbers

IEEE-754 Single precision (32 bits):

 $c = (0000000)_2 = 0$

Exponent set to m = -126

Smallest positive subnormal FP number: $2^{-23} \times 2^{-126} \approx 1.4 \times 10^{-45}$

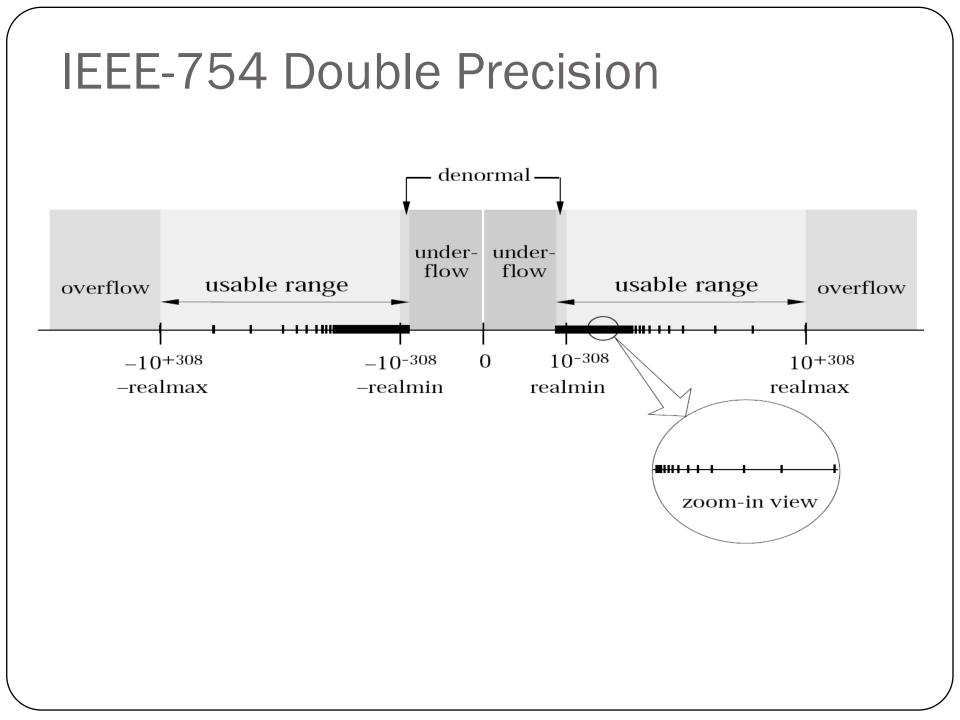
IEEE-754 Double precision (64 bits):

 $c = (0000000000)_2 = 0$

Exponent set to m = -1022

Smallest positive subnormal FP number: $2^{-52} \times 2^{-1022} \approx 4.9 \times 10^{-324}$

Allows for more gradual underflow to zero (however subnormal numbers don't have as many accurate digits as normalized numbers)



Summary for Single Precision					
$x = (-1)^{s} 1 \cdot f \times 2^{m} = s c f m = c - 127$					
Stored binary	Significand	value			
exponent (<i>c</i>)	fraction (f)				
00000000	00000000	zero			
00000000	any $f \neq 0$	$(-1)^{s} 0.f \times 2^{-126}$			
00000001	any f	$(-1)^{s} 1.f \times 2^{-126}$			
:	:	:			
11111110	any f	$(-1)^{s} 1.f \times 2^{127}$			
11111111	any $f \neq 0$	NaN			
11111111	00000000	infinity			

Example

Determine the single-precision representation of the decimal number x = 37.625

• Convert the decimal number to binary: $(37.625)_{10} = (100101.101)_2$

	2 ⁵	24	2 ³	2 ²	21	2 ⁰	2 ⁻¹	2 ⁻²	2 ⁻³
	32	16	8	4	2	1	0.5	0.25	0.125
#	1	0	0	1	0	1	1	0	1
37.625	5.625	5.625	5.625	1.625	1.625	0.625	0.125	0.125	0

• Convert the binary number to the normalized FP representation $1. f \times 2^m$

 $(100101.101)_2 = (1.00101101)_2 \times 2^5$

$$s = 0$$
 $f = 00101101 \dots 00$ $m = 5$

 $c = m + 127 = 132 = (10000100)_2$

 $0 \quad 10000100 \quad 00101101000000000000000$

What is the equivalent decimal number?

- $0 \quad 11111111 \quad 1111111110000111111111 \\$

Iclicker question

A number system can be represented as $x = \pm 1. b_1 b_2 b_3 \times 2^m$ for $m \in [-5,5]$ and $b_i \in \{0,1\}$.

- 1) What is the smallest positive normalized FP number: a) 0.0625 b) 0.09375 c) 0.03125 d) 0.046875 e) 0.125
- 2) What is the largest positive normalized FP number: a) 28 b) 60 c) 56 d) 32
- 3) How many additional numbers (positive and negative) can be represented when using subnormal representation?
 a) 7 b) 14 c) 3 d) 6 e) 16
- 4) What is the smallest positive subnormal number?
 a) 0.00390625 b) 0.00195313 c) 0.03125 d) 0.0136719
- 5) Determine machine epsilon a) 0.0625 b) 0.00390625 c) 0.0117188 d) 0.125

A number system can be represented as $x = \pm 1. b_1 b_2 b_3 b_4 \times 2^m$ for $m \in [-6,6]$ and $b_i \in \{0,1\}$.

1) Let's say you want to represent the decimal number **19.625** using the binary number system above. Can you represent this number exactly?

2) What is the range of integer numbers that you can represent exactly using this binary system?

Iclicker question

Determine the decimal number corresponding to the following single-precision machine number:

A) 67,108,872

B) -67,108,872

C) 67,108,864

D) -67,108,864

Iclicker question

Determine the double-precision machine representation of the decimal number x = -37.625

- A) 1 10000100000 00101101000000...0
- B) 1 1000000100 0010110100000 ... 0
- C) 0 10000100000 00101101000000 ... 0
- D) 0 1000000100 00101101000000 ... 0 (52-bit)