Least Squares and Data Fitting

Data fitting

How do we best fit a set of data points?

Linear Least Squares 1) Fitting with a line

Given m data points $\{\{t_1, y_1\}, \dots, \{t_m, y_m\}\}$, we want to find the function $y = x_o + x_1 t$

that best fit the data (or better, we want to find the coefficients x_0, x_1).

Thinking geometrically, we can think "what is the line that most nearly passes through all the points?"

Given m data points $\{\{t_1, y_1\}, \dots, \{t_m, y_m\}\}$, we want to find x_o and x_1 such that

$$y_i = x_o + x_1 t_i \qquad \forall i \in [1, m]$$

or in matrix form:

$$\begin{bmatrix} 1 & t_1 \\ \vdots & \vdots \\ 1 & t_m \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix} \quad \boldsymbol{A} \ \boldsymbol{x} = \boldsymbol{b}$$

$$\boldsymbol{m} \times \boldsymbol{n} \ \boldsymbol{n} \times \boldsymbol{1} \quad \boldsymbol{m} \times \boldsymbol{1}$$

Note that this system of linear equations has more equations than unknowns – OVERDETERMINED SYSTEMS

We want to find the appropriate linear combination of the columns of \boldsymbol{A} that makes up the vector \boldsymbol{b} .

If a solution exists that satisfies A = b then $b \in range(A)$

Linear Least Squares

In most cases, b ∉ range(A) and A x = b does not have an exact solution!

• Therefore, an overdetermined system is better expressed as $A \; x \cong b$

Linear Least Squares

• Least Squares: find the solution **x** that minimizes the residual

$$r=b-Ax$$

• Let's define the function ϕ as the square of the 2-norm of the residual

$$\phi(\boldsymbol{x}) = \|\boldsymbol{b} - \boldsymbol{A}\,\boldsymbol{x}\|_2^2$$

Linear Least Squares

• **Least Squares**: find the solution *x* that minimizes the residual

r=b-Ax

• Let's define the function ϕ as the square of the 2-norm of the residual

$$\phi(\boldsymbol{x}) = \|\boldsymbol{b} - \boldsymbol{A}\,\boldsymbol{x}\|_2^2$$

- Then the least squares problem becomes $\min_{x} \phi(x)$
- Suppose $\phi: \mathcal{R}^m \to \mathcal{R}$ is a smooth function, then $\phi(\mathbf{x})$ reaches a (local) maximum or minimum at a point $\mathbf{x}^* \in \mathcal{R}^m$ only if

 $\nabla\phi(\boldsymbol{x}^*)=0$

How to find the minimizer?

• To minimize the 2-norm of the residual vector

$$\min_{x} \phi(x) = \|b - A x\|_{2}^{2}$$

$$\phi(x) = (b - A x)^{T}(b - A x)$$

$$\nabla \phi(x) = 2(A^{T} b - A^{T} A x)$$
First order necessary condition:
$$\nabla \phi(x) = 0 \rightarrow A^{T} b - A^{T} A x = 0 \rightarrow A^{T} A x = A^{T} b$$
Second order sufficient condition:
$$D^{2} \phi(x) = 2A^{T} A$$

 $D^{2}\phi(x) = 2A^{T}A$ $2A^{T}A$ is a positive semi-definite matrix \rightarrow the solution is a minimum

Linear Least Squares (another approach)

- Find y = A x which is closest to the vector b
- What is the vector $y = A \ x \in range(A)$ that is closest to vector y in the Euclidean norm?

When r = b - y = b - A x is orthogonal to all columns of A, then y is closest to b

$$A^T r = A^T (b - A x) = 0 \longrightarrow A^T A x = A^T b$$

Summary:

- **A** is a $m \times n$ matrix, where m > n.
- *m* is the number of data pair points. *n* is the number of parameters of the "best fit" function.
- Linear Least Squares problem $A \ x \cong b$ always has solution.
- The Linear Least Squares solution \boldsymbol{x} minimizes the square of the 2-norm of the residual:

$$\min_{\mathbf{x}} \|\mathbf{b} - \mathbf{A} \mathbf{x}\|_2^2$$

 One method to solve the minimization problem is to solve the system of Normal Equations

$$A^T A x = A^T b$$

• Let's see some examples and discuss the limitations of this method.

Example:

Data fitting - not always a line fit!

• Does not need to be a line! For example, here we are fitting the data using a quadratic curve.

Linear Least Squares: The problem is linear in its coefficients!

Another examples

We want to find the coefficients of the quadratic function that best fits the data points:

We would not want our "fit" curve to pass through the data points exactly as we are looking to model the general trend and not capture the noise.

Data fitting

 $\begin{bmatrix} 1 & t_1 & t_1^2 \\ \vdots & \vdots & \vdots \\ 1 & t_m & t_m^2 \end{bmatrix} \begin{bmatrix} x_0 \\ x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} y_1 \\ \vdots \\ y_m \end{bmatrix}$

Solve: $A^T A x = A^T b$

Which function is not suitable for linear least squares?

A)
$$y = a + b x + c x^{2} + d x^{3}$$

B) $y = x(a + b x + c x^{2} + d x^{3})$
C) $y = a \sin(x) + b / \cos(x)$
D) $y = a \sin(x) + x / \cos(bx)$
E) $y = a e^{-2x} + b e^{2x}$

Computational Cost

$$A^T A x = A^T b$$

- Compute $A^T A: O(mn^2)$
- Factorize $A^T A$: LU $\rightarrow O\left(\frac{2}{3}n^3\right)$, Cholesky $\rightarrow O\left(\frac{1}{3}n^3\right)$
- Solve $O(n^2)$
- Since m > n the overall cost is $O(mn^2)$

Short questions

Given the data in the table below, which of the plots shows the line of best fit in terms of least squares?

Short questions

Given the data in the table below, and the least squares model

 $y = c_1 + c_2 \sin(t\pi) + c_3 \sin(t\pi/2) + c_4 \sin(t\pi/4)$

written in matrix form as	$\begin{bmatrix} c_1 \end{bmatrix}$		
	$A \begin{vmatrix} c_2 \\ c_2 \end{vmatrix} \cong \mathbf{y}$	t_i	<i>Y</i> _i
	$\begin{bmatrix} c_3 \\ c_4 \end{bmatrix}$	0.5	0.72
determine the entry A_{23} of the matrix A . Note that indices start with 1. A) -1.0 B) 1.0 C) - 0.7		1.0	0.79
		1.5	0.72
		2.0	0.97
		2.5	1.03
		3.0	0.96
E) 0.0		3.5	1.00

Solving Linear Least Squares with SVD

What we have learned so far...

A is a $m \times n$ matrix where m > n (more points to fit than coefficient to be determined)

Normal Equations: $A^T A x = A^T b$

• The solution $A \ x \cong b$ is unique if and only if rank(A) = n(A is full column rank)

• $rank(\mathbf{A}) = n \rightarrow columns of \mathbf{A}$ are *linearly independent* $\rightarrow n$ non-zero singular values $\rightarrow \mathbf{A}^T \mathbf{A}$ has only positive eigenvalues $\rightarrow \mathbf{A}^T \mathbf{A}$ is a symmetric and positive definite matrix $\rightarrow \mathbf{A}^T \mathbf{A}$ is invertible

$$\boldsymbol{x} = (\boldsymbol{A}^T \boldsymbol{A})^{-1} \boldsymbol{A}^T \boldsymbol{b}$$

If rank(A) < n, then A is rank-deficient, and solution of linear least squares problem is not unique.

Condition number for Normal Equations

Finding the least square solution of $A \ x \cong b$ (where A is full rank matrix) using the Normal Equations

$$A^T A x = A^T b$$

has some advantages, since we are solving a square system of linear equations with a symmetric matrix (and hence it is possible to use decompositions such as Cholesky Factorization)

However, the normal equations tend to worsen the conditioning of the matrix.

$$cond(\mathbf{A}^T\mathbf{A}) = (cond(\mathbf{A}))^2$$

How can we solve the least square problem without squaring the condition of the matrix?

SVD to solve linear least squares problems

A is a $m \times n$ rectangular matrix where m > n, and hence the SVD decomposition is given by:

$$\boldsymbol{A} = \begin{pmatrix} \vdots & \dots & \vdots \\ \boldsymbol{u}_1 & \dots & \boldsymbol{u}_m \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_n \\ & & & \sigma_n \\ & & & 0 \\ & & & 0 \end{pmatrix} \begin{pmatrix} \dots & \boldsymbol{v}_1^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & \boldsymbol{v}_n^T & \dots \end{pmatrix}$$

We want to find the least square solution of $A \ x \cong b$, where $A = U \Sigma V^T$

or better expressed in reduced form: $A = U_R \Sigma_R V^T$

Shapes of the Reduced SVD

Suppose you compute a reduced SVD $A = U\Sigma V^T$ of a 10×14 matrix A. What will the shapes of U, Σ , and V be? **Hint:** Remember the transpose on V!

SVD to solve linear least squares problems

$$\boldsymbol{A} = \boldsymbol{U}_{\boldsymbol{R}} \ \boldsymbol{\Sigma}_{\boldsymbol{R}} \ \boldsymbol{V}^{\boldsymbol{T}}$$
$$\boldsymbol{A} = \begin{pmatrix} \vdots & \dots & \vdots \\ \boldsymbol{u}_{1} & \dots & \boldsymbol{u}_{n} \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n} \end{pmatrix} \begin{pmatrix} \dots & \mathbf{v}_{1}^{T} & \dots \\ \vdots & \vdots & \vdots \\ \dots & \mathbf{v}_{n}^{T} & \dots \end{pmatrix}$$

We want to find the least square solution of $A \ x \cong b$, where $A = U_R \ \Sigma_R \ V^T$

Normal equations: $A^T A x = A^T b \rightarrow (U_R \Sigma_R V^T)^T (U_R \Sigma_R V^T) x = (U_R \Sigma_R V^T)^T b$

$$V \Sigma_{R} U_{R}^{T} (U_{R} \Sigma_{R} V^{T}) x = V \Sigma_{R} U_{R}^{T} b$$

$$V \Sigma_{R} \Sigma_{R} V^{T} x = V \Sigma_{R} U_{R}^{T} b$$

$$(\Sigma_{R})^{2} V^{T} x = \Sigma_{R} U_{R}^{T} b$$
When can we take the inverse of the singular matrix?

$$(\Sigma_{R})^{2} V^{T} x = \Sigma_{R} U_{R}^{T} b$$

) Full rank matrix ($\sigma_{i} \neq 0 \forall i$): Unique solution:
rank(A) = n
 $V^{T} x = (\Sigma_{R})^{-1} U_{R}^{T} b$
 $n \times 1$
 $n \times n$
 $n \times n$
 $n \times n$
 $n \times n$
 $n \times m$
 $m \times 1$

2) <u>Rank deficient matr</u>ix ($rank(\mathbf{A}) = r < n$)

 $(\Sigma_R)^2 V^T x = \Sigma_R U_R^T b$ Solution is not unique!!

Find solution **x** such that $\min_{x} \phi(x) = \|\boldsymbol{b} - \boldsymbol{A} x\|_{2}^{2}$

and also $\min_{x} \|x\|_2$

2) <u>Rank deficient matrix (continue)</u>

We want to find the solution \boldsymbol{x} that satisfies $(\boldsymbol{\Sigma}_{\boldsymbol{R}})^2 \boldsymbol{V}^T \boldsymbol{x} = \boldsymbol{\Sigma}_{\boldsymbol{R}} \boldsymbol{U}_{\boldsymbol{R}}^T \boldsymbol{b}$ and also satisfies $\min_{\boldsymbol{x}} \|\boldsymbol{x}\|_2$

Change of variables: Set $V^T x = y$ and then solve $\Sigma_R y = U_R^T b$ for the variable y

Evaluate

Solving Least Squares Problem with SVD (summary)

- Find **x** that satisfies $\min_{x} \|\boldsymbol{b} \boldsymbol{A} \boldsymbol{x}\|_{2}^{2}$
- Find **y** that satisfies $\min_{\mathbf{y}} \left\| \boldsymbol{\Sigma}_{R} \mathbf{y} \boldsymbol{U}_{R}^{T} \boldsymbol{b} \right\|_{2}^{2}$
- Propose **y** that is solution of $\Sigma_R y = U_R^T b$ Cost:

 $O(m n^2)$

 n^2

- Evaluate: $\mathbf{z} = \mathbf{U}_R^T \mathbf{b}$ \longrightarrow mn• Set: $y_i = \begin{cases} \frac{z_i}{\sigma_i}, & \text{if } \sigma_i \neq 0\\ 0, & \text{otherwise} \end{cases}$ i = 1, ..., n \longrightarrow n
- Then compute x = V y

Solving Least Squares Problem with SVD (summary)

- If $\sigma_i \neq 0$ for $\forall i = 1, ..., n$, then the solution $\mathbf{y} = \mathbf{V} (\Sigma_R)^{-1} \mathbf{U}_R^T \mathbf{b}$ is unique (and not a "choice").
- If at least one of the singular values is zero, then the proposed solution \boldsymbol{y} is the one with the smallest 2-norm ($\|\boldsymbol{y}\|_2$ is minimal) that minimizes the 2-norm of the residual $\|\boldsymbol{\Sigma}_R \boldsymbol{y} \boldsymbol{U}_R^T \boldsymbol{b}\|_2$
- Since $||\mathbf{x}||_2 = ||\mathbf{V}\mathbf{y}||_2 = ||\mathbf{y}||_2$, then the solution \mathbf{x} is also the one with the smallest 2-norm ($||\mathbf{x}||_2$ is minimal) for all possible \mathbf{x} for which $||\mathbf{A}\mathbf{x} \mathbf{b}||_2$ is minimal.

Solving Least Squares Problem with SVD (summary)

Solve $A \ x \cong b$ or $U_R \ \Sigma_R V^T x \cong b$

$\boldsymbol{x} \cong \boldsymbol{V} (\boldsymbol{\Sigma}_{\boldsymbol{R}})^{+} \boldsymbol{U}_{\boldsymbol{R}}^{T} \boldsymbol{b}$

Example:

Consider solving the least squares problem $A \ x \cong b$, where the singular value decomposition of the matrix $A = U \Sigma V^T x$ is:

$$\begin{bmatrix} \frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0\\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0\\ 0 & 0 & 0 & 1\\ 0 & 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 14 & 0 & 0\\ 0 & 14 & 0\\ 0 & 0 & 0\\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 1 & 0 & 0\\ 0 & 1 & 0\\ 0 & 0 & 1 \end{bmatrix} \mathbf{x} \cong \begin{bmatrix} 12\\ 9\\ 9\\ 9\\ 10 \end{bmatrix}$$

Determine $\|\boldsymbol{b} - \boldsymbol{A} \boldsymbol{x}\|_2$

Example

Suppose you have $A = U \Sigma V^T x$ calculated. What is the cost of solving

 $\min_{x} \| \boldsymbol{b} - \boldsymbol{A} \, \boldsymbol{x} \|_{2}^{2} ?$

A) O(n)
B) O(n²)
C) O(mn)
D) O(m)
E) O(m²)