# Singular Value Decomposition (matrix factorization)

#### Singular Value Decomposition

The SVD is a factorization of a  $m \times n$  matrix into

$$A = U \Sigma V^T$$

where  $\boldsymbol{U}$  is a  $m \times m$  orthogonal matrix,  $\boldsymbol{V}^{\boldsymbol{T}}$  is a  $n \times n$  orthogonal matrix and  $\boldsymbol{\Sigma}$  is a  $m \times n$  diagonal matrix.

For a square matrix 
$$(m = n)$$
:  

$$\begin{aligned}
\sigma_1 &\geq \sigma_2 \geq \sigma_3 \dots \\
& \sigma_1 &= \begin{pmatrix} \vdots & \dots & \vdots \\ u_1 & \dots & u_n \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \begin{pmatrix} \dots & \mathbf{v}_1^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & \mathbf{v}_n^T & \dots \end{pmatrix} \\
& A &= \begin{pmatrix} \vdots & \dots & \vdots \\ u_1 & \dots & u_n \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \begin{pmatrix} \vdots & \dots & \vdots \\ v_1 & \dots & v_n \\ \vdots & \dots & \vdots \end{pmatrix}^T
\end{aligned}$$

#### Reduced SVD

What happens when  $\boldsymbol{A}$  is not a square matrix?

1) m > n



We can instead re-write the above as:

 $A = U_R \Sigma_R V^T$ 

Where  $\boldsymbol{U}_{\boldsymbol{R}}$  is a  $m \times n$  matrix and  $\boldsymbol{\Sigma}_{\boldsymbol{R}}$  is a  $n \times n$  matrix



We can instead re-write the above as:

 $A = U \Sigma_R V_R^T$ 

where  $\boldsymbol{V_R}$  is a  $n \times m$  matrix and  $\boldsymbol{\Sigma_R}$  is a  $m \times m$  matrix

In general:

$$A = U_R \Sigma_R V_R^T$$

 $U_R$  is a  $m \times k$  matrix  $\Sigma_R$  is a  $k \times k$  matrix  $V_R$  is a  $n \times k$  matrix

$$k = \min(m, n)$$

Let's take a look at the product  $\Sigma^T \Sigma$ , where  $\Sigma$  has the singular values of a A, a  $m \times n$  matrix.



Assume **A** with the singular value decomposition  $A = U \Sigma V^T$ . Let's take a look at the eigenpairs corresponding to  $A^T A$ :

$$A^{T}A = (U \Sigma V^{T})^{T} (U \Sigma V^{T})$$
$$(V^{T})^{T} (\Sigma)^{T} U^{T} (U \Sigma V^{T}) = V\Sigma^{T} U^{T} U \Sigma V^{T} = V \Sigma^{T} \Sigma V^{T}$$

Hence  $A^T A = V \Sigma^2 V^T$ 

Recall that columns of **V** are all linear independent (orthogonal matrix), then from diagonalization ( $B = XDX^{-1}$ ), we get:

- the columns of V are the eigenvectors of the matrix  $A^T A$
- The diagonal entries of  $\Sigma^2$  are the eigenvalues of  $A^T A$

Let's call  $\lambda$  the eigenvalues of  $A^T A$ , then  $\sigma_i^2 = \lambda_i$ 

In a similar way,

$$AA^{T} = (U \Sigma V^{T}) (U \Sigma V^{T})^{T}$$
$$(U \Sigma V^{T}) (V^{T})^{T} (\Sigma)^{T} U^{T} = U \Sigma V^{T} V \Sigma^{T} U^{T} = U \Sigma \Sigma^{T} U^{T}$$

Hence  $AA^T = U \Sigma^2 U^T$ 

Recall that columns of U are all linear independent (orthogonal matrices), then from diagonalization ( $B = XDX^{-1}$ ), we get:

• The columns of  $\boldsymbol{U}$  are the eigenvectors of the matrix  $\boldsymbol{A}\boldsymbol{A}^T$ 

#### How can we compute an SVD of a matrix A?

- 1. Evaluate the *n* eigenvectors  $\mathbf{v}_i$  and eigenvalues  $\lambda_i$  of  $\mathbf{A}^T \mathbf{A}$
- 2. Make a matrix V from the normalized vectors  $v_i$ . The columns are called "right singular vectors".

$$V = \begin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{v}_1 & \dots & \mathbf{v}_n \\ \vdots & \dots & \vdots \end{pmatrix}$$

3. Make a diagonal matrix from the square roots of the eigenvalues.

$$\boldsymbol{\Sigma} = \begin{pmatrix} \sigma_1 & & \\ & \ddots & \\ & & \sigma_n \end{pmatrix} \quad \sigma_i = \sqrt{\lambda_i} \quad \text{and} \quad \sigma_1 \ge \sigma_2 \ge \sigma_3 \dots$$

4. Find  $U: A = U \Sigma V^T \Longrightarrow U \Sigma = A V \Longrightarrow U = A V \Sigma^{-1}$ . The columns are called the "left singular vectors".

#### True or False?

**A** has the singular value decomposition  $A = U \Sigma V^T$ .

- The matrices  $\boldsymbol{U}$  and  $\boldsymbol{V}$  are not singular
- The matrix  $\Sigma$  can have zero diagonal entries
- $\|\boldsymbol{U}\|_2 = 1$
- The SVD exists when the matrix **A** is singular
- The algorithm to evaluate SVD will fail when taking the square root of a negative eigenvalue

#### Singular values are always non-negative

Singular values cannot be negative since  $A^T A$  is a positive semidefinite matrix (for real matrices A)

- A matrix is positive definite if  $x^T B x > 0$  for  $\forall x \neq 0$
- A matrix is positive semi-definite if  $x^T B x \ge 0$  for  $\forall x \neq 0$
- What do we know about the matrix  $A^T A$  ?  $x^T A^T A x = (Ax)^T A x = ||Ax||_2^2 \ge 0$
- Hence we know that  $A^T A$  is a positive semi-definite matrix
- A positive semi-definite matrix has non-negative eigenvalues

$$Bx = \lambda x \Longrightarrow x^T B x = x^T \lambda x = \lambda ||x||_2^2 \ge 0 \Longrightarrow \lambda \ge 0$$

### Cost of SVD

The cost of an SVD is proportional to  $m n^2 + n^3$  where the constant of proportionality constant ranging from 4 to 10 (or more) depending on the algorithm.



### SVD summary:

- The SVD is a factorization of a  $m \times n$  matrix into  $A = U \Sigma V^T$  where U is a  $m \times m$  orthogonal matrix,  $V^T$  is a  $n \times n$  orthogonal matrix and  $\Sigma$  is a  $m \times n$  diagonal matrix.
- In reduced form:  $A = U_R \Sigma_R V_R^T$ , where  $U_R$  is a  $m \times k$  matrix,  $\Sigma_R$  is a  $k \times k$  matrix, and  $V_R$  is a  $n \times k$  matrix, and  $k = \min(m, n)$ .
- The columns of V are the eigenvectors of the matrix  $A^T A$ , denoted the right singular vectors.
- The columns of U are the eigenvectors of the matrix  $AA^T$ , denoted the left singular vectors.
- The diagonal entries of  $\Sigma^2$  are the eigenvalues of  $A^T A$ .  $\sigma_i = \sqrt{\lambda_i}$  are called the singular values.
- The singular values are always non-negative (since  $A^T A$  is a positive semi-definite matrix, the eigenvalues are always  $\lambda \ge 0$ )

# Singular Value Decomposition (applications)

## 1) Determining the rank of a matrix

Suppose **A** is a  $m \times n$  rectangular matrix where m > n:

$$A = \begin{pmatrix} \vdots & \dots & \vdots & \dots & \vdots \\ u_1 & \dots & u_n & \dots & u_m \\ \vdots & \dots & \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 & & & \\ & \ddots & & \\ & & \sigma_n \\ & & 0 \end{pmatrix} \begin{pmatrix} \dots & v_1^T & \dots \\ & \vdots & \vdots \\ & \dots & v_n^T & \dots \end{pmatrix}$$
$$A = \begin{pmatrix} \vdots & \dots & \vdots \\ u_1 & \dots & u_n \\ \vdots & \vdots & \vdots \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \dots & \sigma_1 \mathbf{v}_1^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & \sigma_n \mathbf{v}_n^T & \dots \end{pmatrix} = \sigma_1 u_1 \mathbf{v}_1^T + \sigma_2 u_2 \mathbf{v}_2^T + \dots + \sigma_n u_n \mathbf{v}_n^T$$
$$A = \sum_{i=1}^n \sigma_i u_i \mathbf{v}_i^T$$
$$A_1 = \sigma_1 u_1 \mathbf{v}_1^T \text{ what is rank} (A_1) = ?$$
$$A) 1$$
$$B) n$$
$$C) \text{ depends on the matrix}$$
$$D) \text{ NOTA}$$

#### Rank of a matrix

For general rectangular matrix A with dimensions  $m \times n$ , the reduced SVD is:



If  $\sigma_i \neq 0 \forall i$ , then rank(A) = k (Full rank matrix)

In general, rank(A) = r, where r is the number of non-zero singular values  $\sigma_i$ 

r < k (Rank deficient)

#### Rank of a matrix

- The rank of **A** equals the number of non-zero singular values which is the same as the number of non-zero diagonal elements in  $\Sigma$ .
- Rounding errors may lead to small but non-zero singular values in a rank deficient matrix, hence the rank of a matrix determined by the number of non-zero singular values is sometimes called "effective rank".
- The right-singular vectors (columns of V) corresponding to vanishing singular values span the null space of A.
- The left-singular vectors (columns of **U**) corresponding to the non-zero singular values of **A** span the range of **A**.

### 2) Pseudo-inverse

- **Problem:** if **A** is rank-deficient,  $\Sigma$  is not be invertible
- How to fix it: Define the Pseudo Inverse
- Pseudo-Inverse of a diagonal matrix:

$$(\mathbf{\Sigma}^{+})_{i} = \begin{cases} \frac{1}{\sigma_{i}}, & \text{if } \sigma_{i} \neq 0\\ 0, & \text{if } \sigma_{i} = 0 \end{cases}$$

• Pseudo-Inverse of a matrix *A*:

$$A^+ = V\Sigma^+ U^T$$

### 3) Matrix norms

The Euclidean norm of an orthogonal matrix is equal to 1

$$\|\boldsymbol{U}\|_{2} = \max_{\|\boldsymbol{x}\|_{2}=1} \|\boldsymbol{U}\boldsymbol{x}\|_{2} = \max_{\|\boldsymbol{x}\|_{2}=1} \sqrt{(\boldsymbol{U}\boldsymbol{x})^{T}(\boldsymbol{U}\boldsymbol{x})} = \max_{\|\boldsymbol{x}\|_{2}=1} \sqrt{\boldsymbol{x}^{T}\boldsymbol{x}} = \max_{\|\boldsymbol{x}\|_{2}=1} \|\boldsymbol{x}\|_{2} = 1$$

The Euclidean norm of a matrix is given by the largest singular value

$$\|A\|_{2} = \max_{\|x\|_{2}=1} \|Ax\|_{2} = \max_{\|x\|_{2}=1} \|U\Sigma V^{T}x\|_{2} = \max_{\|x\|_{2}=1} \|\Sigma V^{T}x\|_{2} =$$
$$= \max_{\|V^{T}x\|_{2}=1} \|\Sigma V^{T}x\|_{2} = \max_{\|y\|_{2}=1} \|\Sigma y\|_{2} = \max(\sigma_{i})$$

Where we used the fact that  $\|\boldsymbol{U}\|_2 = 1$ ,  $\|\boldsymbol{V}\|_2 = 1$  and  $\boldsymbol{\Sigma}$  is diagonal

$$\|A\|_2 = \max(\sigma_i) = \sigma_{max} \qquad \qquad \sigma_{max} \text{ is the largest singular value}$$

#### 4) Norm for the inverse of a matrix

The Euclidean norm of the inverse of a square-matrix is given by:

Assume here A is full rank, so that  $A^{-1}$  exists

$$\|A^{-1}\|_{2} = \max_{\|x\|_{2}=1} \|(U \Sigma V^{T})^{-1} x\|_{2} = \max_{\|x\|_{2}=1} \|V \Sigma^{-1} U^{T} x\|_{2}$$

Since  $\|\boldsymbol{U}\|_2 = 1$ ,  $\|\boldsymbol{V}\|_2 = 1$  and  $\boldsymbol{\Sigma}$  is diagonal then

 $\|A^{-1}\|_2 = \frac{1}{\sigma_{min}}$ 

 $\sigma_{min}$  is the smallest singular value

### 5) Norm of the pseudo-inverse matrix

The norm of the pseudo-inverse of a  $m \times n$  matrix is:

$$\|\boldsymbol{A}^+\|_2 = \frac{1}{\sigma_r}$$

where  $\sigma_r$  is the smallest **non-zero** singular value. This is valid for any matrix, regardless of the shape or rank.

Note that for a full rank square matrix,  $\|A^+\|_2$  is the same as  $\|A^{-1}\|_2$ .

Zero matrix: If A is a zero matrix, then  $A^+$  is also the zero matrix, and  $||A^+||_2 = 0$ 

#### 6) Condition number of a matrix

The condition number of a matrix is given by

 $cond_2(A) = \|A\|_2 \|A^+\|_2$ 

If the matrix is full rank: rank(A) = min(m, n)

$$cond_2(\mathbf{A}) = \frac{\sigma_{max}}{\sigma_{min}}$$

where  $\sigma_{max}$  is the largest singular value and  $\sigma_{min}$  is the smallest singular value

If the matrix is rank deficient: rank(A) < min(m, n)

 $cond_2(\mathbf{A}) = \infty$ 

#### 7) Low-Rank Approximation

Another way to write the SVD (assuming for now m > n for simplicity)



The SVD writes the matrix A as a sum of outer products (of left and right singular vectors).

#### 7) Low-Rank Approximation (cont.)

The best **rank-**k approximation for a  $m \times n$  matrix A, (where  $k \leq min(m, n)$ ) is the one that minimizes the following problem:

$$\min_{A_k} \|A - A_k\|$$
  
such that  $\operatorname{rank}(A_k) \le k$ .

When using the induced 2-norm, the best **rank-***k* approximation is given by:

$$A_k = \sigma_1 \boldsymbol{u}_1 \mathbf{v}_1^T + \sigma_2 \boldsymbol{u}_2 \mathbf{v}_2^T + \dots + \sigma_k \boldsymbol{u}_k \mathbf{v}_k^T$$
$$\sigma_1 \ge \sigma_2 \ge \sigma_3 \dots \ge 0$$

Note that rank(A) = n and  $rank(A_k) = k$  and the norm of the difference between the matrix and its approximation is

$$\|\boldsymbol{A} - \boldsymbol{A}_{k}\|_{2} = \|\sigma_{k+1}\boldsymbol{u}_{k+1}\boldsymbol{v}_{k+1}^{T} + \sigma_{k+2}\boldsymbol{u}_{k+2}\boldsymbol{v}_{k+2}^{T} + \dots + \sigma_{n}\boldsymbol{u}_{n}\boldsymbol{v}_{n}^{T}\|_{2} = \sigma_{k+1}\boldsymbol{u}_{k+1}\boldsymbol{v}_{k+1}^{T} + \sigma_{k+2}\boldsymbol{u}_{k+2}\boldsymbol{v}_{k+2}^{T} + \dots + \sigma_{n}\boldsymbol{u}_{n}\boldsymbol{v}_{n}^{T}\|_{2}$$

#### Example: Image compression



1417



#### Example: Image compression





#### Image using rank-50 approximation



# 8) Using SVD to solve square system of linear equations

If **A** is a  $n \times n$  square matrix and we want to solve A = b, we can use the SVD for **A** such that

 $U \Sigma V^T x = b$  $\Sigma V^T x = U^T b$ 

Solve:  $\Sigma y = U^T b$  (diagonal matrix, easy to solve!) Evaluate: x = V y

Cost of solve:  $O(n^2)$ Cost of decomposition  $O(n^3)$  (recall that SVD and LU have the same cost asymptotic behavior, however the number of operations - constant factor before  $n^3$  - for the SVD is larger than LU)