Singular Value Decomposition (matrix factorization)

Singular Value Decomposition

The SVD is a factorization of a $m \times n$ matrix into

$$
A=U \Sigma V^{T}
$$

where \boldsymbol{U} is a $m \times m$ orthogonal matrix, $\boldsymbol{V}^{\boldsymbol{T}}$ is a $n \times n$ orthogonal matrix and $\boldsymbol{\Sigma}$ is a $m \times n$ diagonal matrix.

For a square matrix $(\boldsymbol{m}=\boldsymbol{n})$:

$$
\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \ldots
$$

$\boldsymbol{A}=\left(\begin{array}{ccc}\vdots & \ldots & \vdots \\ \boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n} \\ \vdots & \ldots & \vdots\end{array}\right)\left(\begin{array}{c}\sigma_{1} \\ \end{array}\right.$

$$
\left.\sigma_{n}\right)\left(\begin{array}{ccc}
\ldots & \mathbf{v}_{1}^{T} & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & \mathbf{v}_{n}^{T} & \ldots
\end{array}\right)
$$

$\boldsymbol{A}=\left(\begin{array}{ccc}\vdots & \ldots & \vdots \\ \boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n} \\ \vdots & \ldots & \vdots\end{array}\right)\left(\begin{array}{ccc}\sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n}\end{array}\right)\left(\begin{array}{ccc}\vdots & \ldots & \vdots \\ \boldsymbol{v}_{1} & \ldots & \boldsymbol{v}_{n} \\ \vdots & \ldots & \vdots\end{array}\right)^{T}$

Reduced SVD

What happens when \boldsymbol{A} is not a square matrix?

1) $m>n$

We can instead re-write the above as:

$$
A=U_{R} \Sigma_{R} V^{T}
$$

Where $\boldsymbol{U}_{\boldsymbol{R}}$ is a $m \times n$ matrix and $\boldsymbol{\Sigma}_{\boldsymbol{R}}$ is a $n \times n$ matrix

Reduced SVD

2) $n>m$

We can instead re-write the above as:

$$
A=U \Sigma_{R} V_{R}^{T}
$$

where $\boldsymbol{V}_{\boldsymbol{R}}$ is a $n \times m$ matrix and $\boldsymbol{\Sigma}_{\boldsymbol{R}}$ is a $m \times m$ matrix
In general:

$$
A=U_{R} \Sigma_{R} V_{R}^{T}
$$

$\boldsymbol{U}_{\boldsymbol{R}}$ is a $m \times k$ matrix
$\boldsymbol{\Sigma}_{\boldsymbol{R}}$ is a $k \times k$ matrix $\quad k=\min (m, n)$
$\boldsymbol{V}_{\boldsymbol{R}}$ is a $n \times k$ matrix

Let's take a look at the product $\boldsymbol{\Sigma}^{\boldsymbol{T}} \boldsymbol{\Sigma}$, where $\boldsymbol{\Sigma}$ has the singular values of a \boldsymbol{A}, a $m \times n$ matrix.

Assume \boldsymbol{A} with the singular value decomposition $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$. Let's take a look at the eigenpairs corresponding to $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$:

$$
\begin{gathered}
A^{T} A=\left(U \Sigma V^{T}\right)^{T}\left(U \Sigma V^{T}\right) \\
\left(V^{T}\right)^{T}(\Sigma)^{T} U^{T}\left(U \Sigma V^{T}\right)=V \Sigma^{T} U^{T} U \Sigma V^{T}=V \Sigma^{T} \Sigma V^{T}
\end{gathered}
$$

Hence $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}=\boldsymbol{V} \boldsymbol{\Sigma}^{\mathbf{2}} \boldsymbol{V}^{\boldsymbol{T}}$

Recall that columns of \boldsymbol{V} are all linear independent (orthogonal matrix), then from diagonalization $\left(\boldsymbol{B}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{\mathbf{- 1}}\right)$, we get:

- the columns of \boldsymbol{V} are the eigenvectors of the matrix $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$
- The diagonal entries of $\boldsymbol{\Sigma}^{\mathbf{2}}$ are the eigenvalues of $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$

Let's call λ the eigenvalues of $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$, then $\sigma_{i}{ }^{2}=\lambda_{i}$

In a similar way,
$A A^{T}=\left(U \Sigma V^{T}\right)\left(U \Sigma V^{T}\right)^{T}$
$\left(\boldsymbol{U} \Sigma \boldsymbol{V}^{T}\right)\left(\boldsymbol{V}^{\boldsymbol{T}}\right)^{\boldsymbol{T}}(\boldsymbol{\Sigma})^{\boldsymbol{T}} \boldsymbol{U}^{\boldsymbol{T}}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{T} \boldsymbol{V} \Sigma^{\boldsymbol{T}} \boldsymbol{U}^{T}=\boldsymbol{U} \boldsymbol{\Sigma} \Sigma^{T} \boldsymbol{U}^{T}$

Hence $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}=\boldsymbol{U} \boldsymbol{\Sigma}^{\mathbf{2}} \boldsymbol{U}^{\boldsymbol{T}}$

Recall that columns of \boldsymbol{U} are all linear independent (orthogonal matrices), then from diagonalization $\left(\boldsymbol{B}=\boldsymbol{X} \boldsymbol{D} \boldsymbol{X}^{\mathbf{- 1}}\right)$, we get:

- The columns of \boldsymbol{U} are the eigenvectors of the matrix $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}$

How can we compute an SVD of a matrix A?

1. Evaluate the n eigenvectors \mathbf{v}_{i} and eigenvalues λ_{i} of $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$
2. Make a matrix \boldsymbol{V} from the normalized vectors \mathbf{v}_{i}. The columns are called "right singular vectors".

$$
\boldsymbol{V}=\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\mathbf{v}_{1} & \ldots & \mathbf{v}_{n} \\
\vdots & \ldots & \vdots
\end{array}\right)
$$

3. Make a diagonal matrix from the square roots of the eigenvalues.

$$
\boldsymbol{\Sigma}=\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right) \quad \sigma_{i}=\sqrt{\lambda_{i}} \quad \text { and } \quad \sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \ldots
$$

4. Find $\boldsymbol{U}: \boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \Longrightarrow \boldsymbol{U} \boldsymbol{\Sigma}=\boldsymbol{A} \boldsymbol{V} \Longrightarrow \boldsymbol{U}=\boldsymbol{A} \boldsymbol{V} \boldsymbol{\Sigma}^{\boldsymbol{1}}$. The columns are called the "left singular vectors".

True or False?

\boldsymbol{A} has the singular value decomposition $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$.

- The matrices \boldsymbol{U} and \boldsymbol{V} are not singular
- The matrix $\boldsymbol{\Sigma}$ can have zero diagonal entries
- $\|\boldsymbol{U}\|_{2}=1$
- The SVD exists when the matrix \boldsymbol{A} is singular
- The algorithm to evaluate SVD will fail when taking the square root of a negative eigenvalue

Singular values are always non-negative

Singular values cannot be negative since $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$ is a positive semidefinite matrix (for real matrices \boldsymbol{A})

- A matrix is positive definite if $\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{B} \boldsymbol{x}>\mathbf{0}$ for $\forall \boldsymbol{x} \neq \mathbf{0}$
- A matrix is positive semi-definite if $\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{B} \boldsymbol{x} \geq \mathbf{0}$ for $\forall \boldsymbol{x} \neq \mathbf{0}$
- What do we know about the matrix $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$?

$$
x^{T} A^{T} A x=(A x)^{T} A x=\|A x\|_{2}^{2} \geq 0
$$

- Hence we know that $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$ is a positive semi-definite matrix
- A positive semi-definite matrix has non-negative eigenvalues

$$
B \boldsymbol{x}=\lambda \boldsymbol{x} \Rightarrow \boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{B} \boldsymbol{x}=\boldsymbol{x}^{\boldsymbol{T}} \lambda \boldsymbol{x}=\lambda\|x\|_{2}^{2} \geq 0 \Rightarrow \lambda \geq 0
$$

Cost of SVD

The cost of an SVD is proportional to $\boldsymbol{m} \boldsymbol{n}^{2}+\boldsymbol{n}^{\mathbf{3}}$ where the constant of proportionality constant ranging from 4 to 10 (or more) depending on the algorithm.

SVD summary:

- The SVD is a factorization of a $m \times n$ matrix into $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$ where \boldsymbol{U} is a $m \times m$ orthogonal matrix, $\boldsymbol{V}^{\boldsymbol{T}}$ is a $n \times n$ orthogonal matrix and $\boldsymbol{\Sigma}$ is a $m \times n$ diagonal matrix.
- In reduced form: $\boldsymbol{A}=\boldsymbol{U}_{\boldsymbol{R}} \boldsymbol{\Sigma}_{\boldsymbol{R}} \boldsymbol{V}_{\boldsymbol{R}}{ }^{\boldsymbol{T}}$, where $\boldsymbol{U}_{\boldsymbol{R}}$ is a $m \times k$ matrix, $\boldsymbol{\Sigma}_{\boldsymbol{R}}$ is a $k \times k$ matrix, and $\boldsymbol{V}_{\boldsymbol{R}}$ is a $n \times k$ matrix, and $k=\min (m, n)$.
- The columns of \boldsymbol{V} are the eigenvectors of the matrix $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$, denoted the right singular vectors.
- The columns of \boldsymbol{U} are the eigenvectors of the matrix $\boldsymbol{A} \boldsymbol{A}^{\boldsymbol{T}}$, denoted the left singular vectors.
- The diagonal entries of $\boldsymbol{\Sigma}^{\mathbf{2}}$ are the eigenvalues of $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A} . \sigma_{i}=\sqrt{\lambda_{i}}$ are called the singular values.
- The singular values are always non-negative (since $\boldsymbol{A}^{\boldsymbol{T}} \boldsymbol{A}$ is a positive semi-definite matrix, the eigenvalues are always $\lambda \geq 0$)

Singular Value Decomposition (applications)

1) Determining the rank of a matrix

Suppose \boldsymbol{A} is a $m \times n$ rectangular matrix where $m>n$:
$\boldsymbol{A}=\left(\begin{array}{ccccc}\vdots & \ldots & \vdots & \ldots & \vdots \\ \boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n} & \ldots & \boldsymbol{u}_{m} \\ \vdots & \ldots & \vdots & \ldots & \vdots\end{array}\right)\left(\begin{array}{ccc}\sigma_{1} & & \\ & \ddots & \\ & & \sigma_{n} \\ & & 0 \\ & & \\ & & \\ & & \\ & & \\ & & \\ & & \\ \vdots & \vdots & \ldots \\ \ldots & \mathbf{v}_{n}^{T} & \ldots\end{array}\right)$
$\boldsymbol{A}=\left(\begin{array}{ccc}\vdots & \ldots & \vdots \\ \boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n} \\ \vdots & \ldots & \vdots\end{array}\right)\left(\begin{array}{ccc}\ldots & \sigma_{1} \mathbf{v}_{1}^{T} & \ldots \\ \vdots & \vdots & \vdots \\ \ldots & \sigma_{n} \mathbf{v}_{n}^{T} & \ldots\end{array}\right)=\sigma_{1} \boldsymbol{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \mathbf{v}_{2}^{T}+\cdots+\sigma_{n} \boldsymbol{u}_{n} \mathbf{v}_{n}^{T}$
$\boldsymbol{A}=\sum_{i=1}^{n} \sigma_{i} \boldsymbol{u}_{i} \mathbf{v}_{i}^{T}$
$\boldsymbol{A}_{1}=\sigma_{1} \boldsymbol{u}_{1} \mathbf{v}_{\mathbf{1}}^{T}$ what is $\operatorname{rank}\left(\boldsymbol{A}_{1}\right)=$?
A) 1
B) n

In general, $\operatorname{rank}\left(\boldsymbol{A}_{k}\right)=k$
C) depends on the matrix
D) NOTA

Rank of a matrix

For general rectangular matrix \boldsymbol{A} with dimensions $m \times n$, the reduced SVD is:

If $\sigma_{i} \neq 0 \forall i$, then $\operatorname{rank}(\boldsymbol{A})=k$ (Full rank matrix)

In general, $\operatorname{rank}(\boldsymbol{A})=\boldsymbol{r}$, where \boldsymbol{r} is the number of non-zero singular values σ_{i}
$r<k($ Rank deficient $)$

Rank of a matrix

- The rank of \mathbf{A} equals the number of non-zero singular values which is the same as the number of non-zero diagonal elements in $\boldsymbol{\Sigma}$.
- Rounding errors may lead to small but non-zero singular values in a rank deficient matrix, hence the rank of a matrix determined by the number of non-zero singular values is sometimes called "effective rank".
- The right-singular vectors (columns of \boldsymbol{V}) corresponding to vanishing singular values span the null space of \mathbf{A}.
- The left-singular vectors (columns of \boldsymbol{U}) corresponding to the non-zero singular values of \mathbf{A} span the range of \mathbf{A}.

2) Pseudo-inverse

- Problem: if \mathbf{A} is rank-deficient, $\boldsymbol{\Sigma}$ is not be invertible
- How to fix it: Define the Pseudo Inverse
- Pseudo-Inverse of a diagonal matrix:

$$
\left(\Sigma^{+}\right)_{i}= \begin{cases}\frac{1}{\sigma_{i}}, & \text { if } \sigma_{i} \neq 0 \\ 0, & \text { if } \sigma_{i}=0\end{cases}
$$

- Pseudo-Inverse of a matrix \boldsymbol{A} :

$$
A^{+}=V \Sigma^{+} \boldsymbol{U}^{\boldsymbol{T}}
$$

3) Matrix norms

The Euclidean norm of an orthogonal matrix is equal to 1

$$
\|\boldsymbol{U}\|_{2}=\max _{\|x\|_{2}=1}\|\boldsymbol{U} \boldsymbol{x}\|_{2}=\max _{\|x\|_{2}=1} \sqrt{(\boldsymbol{U} \boldsymbol{x})^{T}(\boldsymbol{U x})}=\max _{\|x\|_{2}=1} \sqrt{\boldsymbol{x}^{\boldsymbol{T}} \boldsymbol{x}}=\max _{\|x\|_{2}=1}\|x\|_{2}=1
$$

The Euclidean norm of a matrix is given by the largest singular value

$$
\begin{array}{r}
\|\boldsymbol{A}\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\|\boldsymbol{A} \boldsymbol{x}\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}= \\
=\max _{\left\|\boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}=1}\left\|\boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}=\max _{\|\boldsymbol{y}\|_{2}=1}\|\boldsymbol{\Sigma} \boldsymbol{y}\|_{2}=\max \left(\sigma_{i}\right)
\end{array}
$$

Where we used the fact that $\|\boldsymbol{U}\|_{2}=1,\|\boldsymbol{V}\|_{2}=1$ and $\boldsymbol{\Sigma}$ is diagonal
$\|\boldsymbol{A}\|_{2}=\max \left(\sigma_{i}\right)=\sigma_{\max }$

4) Norm for the inverse of a matrix

The Euclidean norm of the inverse of a square-matrix is given by:
Assume here \boldsymbol{A} is full rank, so that $\boldsymbol{A}^{\mathbf{1}}$ exists
$\left\|\boldsymbol{A}^{-1}\right\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\left(\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}\right)^{-1} \boldsymbol{x}\right\|_{2}=\max _{\|\boldsymbol{x}\|_{2}=1}\left\|\boldsymbol{V} \boldsymbol{\Sigma}^{\boldsymbol{- 1}} \boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{x}\right\|_{2}$
Since $\|\boldsymbol{U}\|_{2}=1,\|\boldsymbol{V}\|_{2}=1$ and $\boldsymbol{\Sigma}$ is diagonal then

$$
\left\|\boldsymbol{A}^{-1}\right\|_{2}=\frac{1}{\sigma_{\min }} \quad \sigma_{\min } \text { is the smallest singular value }
$$

5) Norm of the pseudo-inverse matrix

The norm of the pseudo-inverse of a $m \times n$ matrix is:

$$
\left\|\boldsymbol{A}^{+}\right\|_{2}=\frac{1}{\sigma_{r}}
$$

where σ_{r} is the smallest non-zero singular value. This is valid for any matrix, regardless of the shape or rank.

Note that for a full rank square matrix, $\left\|\boldsymbol{A}^{+}\right\|_{2}$ is the same as $\left\|\boldsymbol{A}^{-1}\right\|_{2}$.
Zero matrix: If \boldsymbol{A} is a zero matrix, then \boldsymbol{A}^{+}is also the zero matrix, and $\left\|\boldsymbol{A}^{+}\right\|_{2}=0$

6) Condition number of a matrix

The condition number of a matrix is given by

$$
\operatorname{cond}_{2}(\boldsymbol{A})=\|\boldsymbol{A}\|_{2}\left\|\boldsymbol{A}^{+}\right\|_{2}
$$

If the matrix is full rank: $\operatorname{rank}(\boldsymbol{A})=\min (m, n)$

$$
\operatorname{cond}_{2}(\boldsymbol{A})=\frac{\sigma_{\max }}{\sigma_{\min }}
$$

where $\sigma_{\max }$ is the largest singular value and $\sigma_{\min }$ is the smallest singular value

If the matrix is rank deficient: $\operatorname{rank}(\boldsymbol{A})<\min (m, n)$

$$
\operatorname{cond}_{2}(\boldsymbol{A})=\infty
$$

7) Low-Rank Approximation

Another way to write the SVD (assuming for now $m>n$ for simplicity)

$$
\begin{aligned}
& \boldsymbol{A}=\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & . & \boldsymbol{u}_{m} \\
\vdots & . . & \vdots
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n} \\
& & 0 \\
& & \vdots
\end{array}\right)\left(\begin{array}{ccc}
\ldots & \mathbf{v}_{1}^{T} & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & \mathbf{v}_{n}^{T} & \ldots
\end{array}\right) \\
& =\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n} \\
\vdots & \ldots & \vdots
\end{array}\right)\left(\begin{array}{ccc}
\ldots & \sigma_{1} \mathbf{v}_{1}^{T} & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & \sigma_{n} \mathbf{v}_{n}^{T} & \ldots
\end{array}\right) \\
& =\sigma_{1} \boldsymbol{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \mathbf{v}_{2}^{T}+\cdots+\sigma_{n} \boldsymbol{u}_{n} \mathbf{v}_{n}^{T}
\end{aligned}
$$

The SVD writes the matrix A as a sum of outer products (of left and right singular vectors).

7) Low-Rank Approximation (cont.)

The best rank- \boldsymbol{k} approximation for a $m \times n$ matrix \boldsymbol{A}, (where k $\leq \min (m, n))$ is the one that minimizes the following problem:

$$
\begin{aligned}
& \min _{A_{k}}\left\|A-A_{k}\right\| \\
& \text { such that } \quad \operatorname{rank}\left(A_{k}\right) \leq k .
\end{aligned}
$$

When using the induced 2-norm, the best rank- \boldsymbol{k} approximation is given by:

$$
\begin{gathered}
\boldsymbol{A}_{k}=\sigma_{1} \boldsymbol{u}_{1} \mathbf{v}_{1}^{T}+\sigma_{2} \boldsymbol{u}_{2} \mathbf{v}_{2}^{T}+\cdots+\sigma_{k} \boldsymbol{u}_{k} \mathbf{v}_{k}^{T} \\
\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \cdots \geq 0
\end{gathered}
$$

Note that $\operatorname{rank}(\boldsymbol{A})=n$ and $\operatorname{rank}\left(\boldsymbol{A}_{\boldsymbol{k}}\right)=k$ and the norm of the difference between the matrix and its approximation is

$$
\left\|\boldsymbol{A}-\boldsymbol{A}_{k}\right\|_{2}=\left\|\sigma_{k+1} \boldsymbol{u}_{k+1} \mathbf{v}_{k+1}^{T}+\sigma_{k+2} \boldsymbol{u}_{k+2} \mathbf{v}_{k+2}^{T}+\cdots+\sigma_{n} \boldsymbol{u}_{n} \mathbf{v}_{n}^{T}\right\|_{2}=\sigma_{k+1}
$$

Example: Image compression

Example: Image compression

Image using rank-50 approximation

8) Using SVD to solve square system of linear equations

If \boldsymbol{A} is a $n \times n$ square matrix and we want to solve $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$, we can use the SVD for \boldsymbol{A} such that

$$
\begin{gathered}
U \Sigma V^{T} x=b \\
\Sigma V^{T} x=U^{T} b
\end{gathered}
$$

Solve: $\boldsymbol{\Sigma} \boldsymbol{y}=\boldsymbol{U}^{\boldsymbol{T}} \boldsymbol{b}$ (diagonal matrix, easy to solve!)
Evaluate: $\boldsymbol{x}=\boldsymbol{V} \boldsymbol{y}$
Cost of solve: $O\left(n^{2}\right)$
Cost of decomposition $O\left(n^{3}\right)$ (recall that SVD and LU have the same cost asymptotic behavior, however the number of operations - constant factor before n^{3} - for the SVD is larger than LU)

