Optimization

Optimization

Goal: Find the minimizer \boldsymbol{x}^{*} that minimizes the objective (cost) function $f(\boldsymbol{x}): \mathcal{R}^{n} \rightarrow \mathcal{R}$

Unconstrained Optimization

$$
f\left(\boldsymbol{x}^{*}\right)=\min _{\boldsymbol{x}} f(\boldsymbol{x})
$$

Constrained Optimization

$$
\begin{aligned}
& f\left(\boldsymbol{x}^{*}\right)=\min _{\boldsymbol{x}} f(\boldsymbol{x}) \\
& \text { s.t. } \mathbf{g}(\boldsymbol{x})=\mathbf{0} \longrightarrow \text { Equality constraints } \\
& \mathbf{h}(\boldsymbol{x}) \leq \mathbf{0} \longrightarrow \text { Inequality constraints }
\end{aligned}
$$

Optimization

- What if we are looking for a maximizer \boldsymbol{x}^{*} ?

$$
f\left(\boldsymbol{x}^{*}\right)=\max _{x} f(\boldsymbol{x})
$$

We can instead solve the minimization problem

$$
f\left(x^{*}\right)=\min _{x}(-f(x))
$$

- What if constraint is $h(x)>0$?
- What if method only has inequality constraints?

Calculus problem: maximize the rectangle area subject to perimeter constraint

$$
\begin{array}{rl}
\max _{\boldsymbol{d} \in \mathcal{R}^{2}} & f\left(d_{1}, d_{2}\right)=d_{1} \times d_{2} \\
\text { such that } & g\left(d_{1}, d_{2}\right)=2\left(d_{1}+d_{2}\right)-20 \leq 0
\end{array}
$$

Demo: Constrained-Problem-2D

Does the solution exists? Local or global solution?

Types of optimization problems

$$
f\left(\boldsymbol{x}^{*}\right)=\min _{\boldsymbol{x}} f(\boldsymbol{x})
$$

f : nonlinear, continuous and smooth

Gradient-free methods
Evaluate $f(\boldsymbol{x})$
Gradient (first-derivative) methods
Evaluate $f(\boldsymbol{x}), \boldsymbol{\nabla} f(\boldsymbol{x})$

Second-derivative methods
Evaluate $f(\boldsymbol{x}), \nabla f(\boldsymbol{x}), \nabla^{\mathbf{2}} f(\boldsymbol{x})$

Taking derivatives...

$$
\begin{aligned}
& f: \mathbb{R}^{n} \rightarrow \mathbb{R} \quad f(\underset{\sim}{x})=f\left(x_{1}, x_{2}, \ldots, x_{n}\right) \\
& \underset{\sim}{\nabla} f(\underline{x})=\left[\begin{array}{c}
\frac{\partial f}{\partial x_{1}} \\
\frac{\partial f}{\partial x_{2}} \\
\vdots \\
\frac{\partial f}{\partial x_{n}}
\end{array}\right] \rightarrow \text { gradient } \\
& \nabla_{\underline{2}}^{2} f(\underset{\sim}{x})={\underset{\partial}{f}}^{f}(\underset{x}{x})=\left[\begin{array}{lllll}
\frac{\partial^{2} f}{\partial x_{1}^{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{2}} & \frac{\partial^{2} f}{\partial x_{1} \partial x_{3}} & \cdots & \frac{\partial^{2} f}{\partial x_{1} \partial x_{n}} \\
\frac{\partial^{2} f}{\partial x_{2} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{2}^{2}} & \frac{\partial^{2} f}{\partial x_{2} \partial x_{3}} & \cdots & \frac{\partial^{2} f}{\partial x_{2} \partial x_{n}} \\
\vdots & & & & \\
\frac{\partial^{2} f}{\partial x_{n} \partial x_{1}} & \frac{\partial^{2} f}{\partial x_{n} \partial x_{2}} & \cdots \cdots \cdot & \frac{\partial^{2} f}{\partial x_{n}^{2}}
\end{array}\right]_{n \times n}
\end{aligned}
$$

What is the optimal solution?

$$
f\left(\boldsymbol{x}^{*}\right)=\min _{\boldsymbol{x}} f(\boldsymbol{x})
$$

(First-order) Necessary condition

$$
\begin{aligned}
& f^{\prime}(x)=0 \\
& \nabla f(x)=\mathbf{0}
\end{aligned}
$$

(Second-order) Sufficient condition
$f^{\prime \prime}(x)>0$
$\boldsymbol{\nabla}^{\mathbf{2}} f(\boldsymbol{x})=\boldsymbol{H}_{\boldsymbol{f}}$ is positive definite

$$
\min _{\underset{\sim}{x}} f(x)
$$

First-order necessary condition

$$
\rightarrow \nabla \underset{\sim}{f}(\underline{x})=\underset{\sim}{0}
$$

Second-order sufficient condition
$\rightarrow \mathrm{H}_{\mathrm{f}}$ is positive definite

eigenvalues of $H_{f}\left(x^{*}\right)$	$H_{f}\left(x^{*}\right)$	critical point
all positive	pos. def.	minimizer
all negative	neg def.	maximizer
reg. and pos.	indefinite	saddle

Example (1D)

Consider the function $f(\boldsymbol{x})=\frac{x^{4}}{4}-\frac{x^{3}}{3}-11 x^{2}+40 x$

Find the stationary point and check the sufficient condition

$$
f^{\prime}(x)=\frac{4 x^{3}}{4}-\frac{3 x^{2}}{3}-22 x+40
$$

$f^{\prime}(x)=3 x^{2}-2 x-22$

Example (ND)
Consider the function $f\left(x_{1}, x_{2}\right)=2 x_{1}^{3}+4 x_{2}^{2}+2 x_{2}-24 x_{1}$
Find the stationary point and check the sufficient condition

$$
\begin{aligned}
& \nabla f=\left[\begin{array}{c}
6 x_{1}^{2}-24 \\
8 x_{2}+2
\end{array}\right]=\left[\begin{array}{l}
0 \\
0
\end{array}\right] \rightarrow \begin{array}{l}
x_{1}= \pm 2 \\
x_{2}=-0.25
\end{array} \\
& H_{f}=\left[\begin{array}{cc}
12 x_{1} & 0 \\
0 & 8
\end{array}\right] \\
& x^{*}=\left[\begin{array}{c}
2 \\
-0.25
\end{array}\right] \rightarrow H_{f}=\left[\begin{array}{cc}
24 & 0 \\
0 & 8
\end{array}\right] \begin{array}{l}
\text { positive } \\
\text { eigenvalues } \\
\Rightarrow \text { posidef 1 } \\
\text { minimum }
\end{array} \\
& x^{*}=\left[\begin{array}{c}
-2 \\
-0.25
\end{array}\right] \rightarrow H_{f}=\left[\begin{array}{cc}
-24 & 0 \\
0 & 8
\end{array}\right] \Rightarrow \begin{array}{l}
\text { indefinite } \\
\text { saddle }
\end{array}
\end{aligned}
$$

Optimization in 1D:
 Golden Section Search

- Similar idea of bisection method for root finding
- Needs to bracket the minimum inside an interval
- Required the function to be unimodal

A function $f: \mathcal{R} \rightarrow \mathcal{R}$ is unimodal on an interval $[a, b]$
\checkmark There is a unique $\boldsymbol{x}^{*} \in[a, b]$ such that $f\left(\boldsymbol{x}^{*}\right)$ is the minimum in [a, b]
\checkmark For any $x_{1}, x_{2} \in[a, b]$ with $x_{1}<x_{2}$

- $\quad x_{2}<x^{*} \Longrightarrow f\left(x_{1}\right)>f\left(x_{2}\right)$
- $x_{1}>x^{*} \Longrightarrow f\left(x_{1}\right)<f\left(x_{2}\right)$

$$
\begin{gathered}
f_{2}<f_{4} \\
x^{*} \in\left[x_{1}, x_{4}\right]
\end{gathered}
$$

$$
\begin{gathered}
f_{2}>f_{4} \\
x^{*} \in\left[x_{2}, x_{3}\right]
\end{gathered}
$$

Such method would in general require 2 new function evaluations per iteration. How can we select the points x_{2}, x_{4} such that only one function evaluation is required?

Golden Section Search
Propose:

$$
x_{1}=a+(1-\tau) h_{0}
$$

$$
\xrightarrow{c} h_{0}=b-a \rightarrow
$$

\rightarrow already have func. value!
$h_{1}=b-a$
$x_{2}=a+\tau h_{1}$
$f_{2}=f\left(x_{2}\right) \rightarrow$ onlu one
if $\left(f_{1}<f_{2}\right)$:

$$
\begin{aligned}
& b=x_{2} \\
& x_{2}=x_{1} \\
& x_{1}=a+(1-\tau) h_{1} \\
& f_{1}=f\left(x_{1}\right)
\end{aligned}
$$

Golden Section Search

What happens with the length of the interval after one iteration?

$$
h_{1}=\tau h_{o}
$$

Or in general: $h_{k+1}=\tau h_{k}$

Hence the interval gets reduced by τ

(for bisection method to solve nonlinear equations, $\tau=0.5$)

For recursion:

$$
\begin{gathered}
\tau h_{1}=(1-\tau) h_{o} \\
\tau \tau h_{o}=(1-\tau) h_{o} \\
\tau^{2}=(1-\tau) \\
\tau=\mathbf{0 . 6 1 8}
\end{gathered}
$$

Golden Section Search

- Derivative free method!
- Slow convergence:

$$
\lim _{k \rightarrow \infty} \frac{\left|e_{k+1}\right|}{\left|e_{k}\right|}=0.618 \quad r=1(\text { linear convergence })
$$

- Only one function evaluation per iteration

Iclicker question

Consider running golden section search on a function that is unimodal. If golden section search is started with an initial brakcet of $[-10,10]$, what is the length of the new bracket after 1 iteration?
A) 20
B) 10
C) 12.36
D) 7.64

Newton's Method

Using Taylor Expansion, we can approximate the function f with a quadratic function about x_{0}

$$
f(x) \approx f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{1}{2} f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)^{2}
$$

And we want to find the minimum of the quadratic function using the first-order necessary condition

$$
\begin{aligned}
& f^{\prime}(x)=0 \longmapsto f^{\prime}\left(x_{0}\right)+f^{\prime \prime}\left(x_{0}\right)\left(x-x_{0}\right)=0 \\
& h=\left(x-x_{0}\right) \longmapsto h=\frac{-f^{\prime}\left(x_{0}\right)}{f^{\prime \prime}\left(x_{0}\right)}
\end{aligned}
$$

Note that this is the same as the step for the Newton's method to solve the nonlinear equation $f^{\prime}(x)=0$

Newton's Method

- Algorithm:
$x_{0}=$ starting guess
$x_{k+1}=x_{k}-f^{\prime}\left(x_{k}\right) / f^{\prime \prime}\left(x_{k}\right)$
- Convergence:
- Typical quadratic convergence
- Local convergence (start guess close to solution)
- May fail to converge, or converge to a maximum or point of inflection

Newton's Method (Graphical Representation)

Iclicker

Consider the function $f(x)=4 x^{3}+2 x^{2}+5 x+40$

If we use the initial guess $x_{0}=2$, what would be the value of x after one iteration of the Newton's method?
A) $x_{1}=2.852$
B) $x_{1}=1.147$
C) $x_{1}=3.173$
D) $x_{1}=0.827$
E) NOTA

Optimization in ND:
 Steepest Descent Method

Given a function
$f(\boldsymbol{x}): \mathcal{R}^{n} \rightarrow \mathcal{R}$ at a point \boldsymbol{x}, the function will decrease its value in the direction of steepest descent: $-\boldsymbol{\nabla} f(\boldsymbol{x})$

Iclicker question:
What is the steepest descent direction?

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}
$$

Steepest Descent Method

Start with initial guess:

$$
x_{0}=\left[\begin{array}{l}
3 \\
3
\end{array}\right]
$$

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}
$$

Check the update:

$$
\begin{aligned}
& x_{1}=x_{0}-\nabla f\left(x_{0}\right) \\
& \nabla f(x)=\left[\begin{array}{l}
2\left(x_{1}-1\right) \\
2\left(x_{2}-1\right)
\end{array}\right] \\
& \boldsymbol{x}_{1}=\left[\begin{array}{l}
3 \\
3
\end{array}\right]-\left[\begin{array}{l}
4 \\
4
\end{array}\right]=-\left[\begin{array}{l}
1 \\
1
\end{array}\right]
\end{aligned}
$$

How far along the gradient direction should we go?

Steepest Descent Method

Update the variable with:

$$
\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}-\alpha_{k} \boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)
$$

How far along the gradient should we go? What is the "best size" for α_{k} ?
A) 0
B) 0.5
C) 1
D) 2
E) Cannot be determined

$$
f\left(x_{1}, x_{2}\right)=\left(x_{1}-1\right)^{2}+\left(x_{2}-1\right)^{2}
$$

Steepest Descent Method

Algorithm:

Initial guess: \boldsymbol{x}_{0}
Evaluate: $\boldsymbol{s}_{\boldsymbol{k}}=-\boldsymbol{\nabla} \boldsymbol{f}\left(\boldsymbol{x}_{k}\right)$

Perform a line search to obtain α_{k} (for example, Golden Section Search)

$$
\alpha_{k}=\operatorname{argmin} f\left(\boldsymbol{x}_{k}+\alpha \boldsymbol{s}_{k}\right)
$$

Update: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{k}+\alpha_{k} \boldsymbol{s}_{k}$

Line search

$$
x_{k+1}=x_{k}-\alpha_{k} \nabla f\left(x_{k}\right)
$$

What is a_{k} such that $f\left(x_{k+1}\right)$ is minimized?

$$
\min _{\alpha} f(\underbrace{x_{k}-\alpha \nabla f\left(x_{k}\right)}_{x_{k+1}})
$$

Necessary conclition: $\frac{d f}{d d}=0$
Chain rule:

$$
\begin{aligned}
\frac{d f}{d \alpha} & =\frac{d f}{d x_{k+1}} \frac{d x_{k+1}}{d \alpha} \quad \frac{d x_{k+1}}{d \alpha}=-\nabla f\left(x_{k}\right) \\
& =-\nabla f\left(x_{k+1}\right)^{\top} \nabla f\left(x_{k}\right)=0
\end{aligned}
$$

$\nabla f\left(x_{k+1}\right)$ is orthogonal to $\nabla f\left(x_{k}\right)$!

Steepest Descent Method

Demo: Steepest Descent
Convergence: linear

Iclicker question:

Consider minimizing the function

$$
f\left(x_{1}, x_{2}\right)=10\left(x_{1}\right)^{3}-\left(x_{2}\right)^{2}+x_{1}-1
$$

Given the initial guess

$$
x_{1}=2, x_{2}=2
$$

what is the direction of the first step of gradient descent?

$$
\begin{array}{ll}
\text { A) }\left[\begin{array}{c}
-61 \\
4
\end{array}\right] & \text { C) }\left[\begin{array}{c}
-120 \\
4
\end{array}\right] \\
\text { B) }\left[\begin{array}{c}
-61 \\
2
\end{array}\right] & \text { D) }\left[\begin{array}{c}
-121 \\
4
\end{array}\right]
\end{array}
$$

Newton's Method

Using Taylor Expansion, we build the approximation:

$$
f(x+s) \approx f(x)+\nabla f(\boldsymbol{x})^{T} \boldsymbol{s}+\frac{1}{2} \boldsymbol{s}^{T} \boldsymbol{H}_{\boldsymbol{f}}(\boldsymbol{x}) \boldsymbol{s}=\hat{f}(\boldsymbol{s})
$$

And we want to find the minimum $\hat{f}(\boldsymbol{s})$, so we enforce the first-order necessary condition

$$
\begin{aligned}
\nabla \hat{f}(\boldsymbol{s})=\mathbf{0} & \Longleftrightarrow \nabla f(\boldsymbol{x})+\frac{1}{2} 2 \boldsymbol{H}_{\boldsymbol{f}}(\boldsymbol{x}) \boldsymbol{s}=0 \\
& \Longleftrightarrow \boldsymbol{H}_{\boldsymbol{f}}(\boldsymbol{x}) \boldsymbol{s}=-\nabla f(\boldsymbol{x})
\end{aligned}
$$

Which becomes a system of linear equations where we need to solve for the Newton step \boldsymbol{S}

Newton's Method

Algorithm:

Initial guess: $\boldsymbol{x}_{\mathbf{0}}$
Solve: $\boldsymbol{H}_{\boldsymbol{f}}\left(\boldsymbol{x}_{k}\right) \boldsymbol{s}_{k}=-\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)$
Update: $\boldsymbol{x}_{k+1}=\boldsymbol{x}_{\boldsymbol{k}}+\boldsymbol{s}_{k}$

Note that the Hessian is related to the curvature and therefore contains the information about how large the step should be.

Iclicker question

To find a minimum of the function $f(x, y)=3 x^{2}+$ $2 y^{2}$, which is the expression for one step of Newton's method?
A) $\left[\begin{array}{l}x_{k+1} \\ y_{k+1}\end{array}\right]=\left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]-\left[\begin{array}{ll}6 & 0 \\ 0 & 4\end{array}\right]^{-1}\left[\begin{array}{l}6 x_{k} \\ 4 y_{k}\end{array}\right]$
B) $\left[\begin{array}{l}x_{k+1} \\ y_{k+1}\end{array}\right]=-\left[\begin{array}{ll}6 & 0 \\ 0 & 4\end{array}\right]^{-1}\left[\begin{array}{l}6 x_{k} \\ 4 y_{k}\end{array}\right]$
C) $\left[\begin{array}{l}x_{k+1} \\ y_{k+1}\end{array}\right]=\left[\begin{array}{ll}6 & 0 \\ 0 & 4\end{array}\right]^{T}\left[\begin{array}{l}6 x_{k} \\ 4 y_{k}\end{array}\right]$
D) $\left[\begin{array}{l}x_{k+1} \\ y_{k+1}\end{array}\right]=\left[\begin{array}{l}x_{k} \\ y_{k}\end{array}\right]-\left[\begin{array}{ll}6 & 0 \\ 0 & 4\end{array}\right]^{T}\left[\begin{array}{l}6 x_{k} \\ 4 y_{k}\end{array}\right]$

Iclicker question:

$$
f(x, y)=0.5 x^{2}+2.5 y^{2}
$$

When using the Newton's Method to find the minimizer of this function, estimate the number of iterations it would take for convergence?
A) 1
B) 2-5
C) 5-10
D) More than 10
E) Depends on the initial guess

Newton's Method Summary

Algorithm:

Initial guess: \boldsymbol{x}_{0}
Solve: $\boldsymbol{H}_{\boldsymbol{f}}\left(\boldsymbol{x}_{k}\right) \boldsymbol{s}_{k}=-\boldsymbol{\nabla} f\left(\boldsymbol{x}_{k}\right)$
Update: $\boldsymbol{x}_{\boldsymbol{k}+1}=\boldsymbol{x}_{\boldsymbol{k}}+\boldsymbol{s}_{\boldsymbol{k}}$

About the method...

- Typical quadratic convergence $)$
- Need second derivatives $\stackrel{0}{ }$
- Local convergence (start guess close to solution)
- Works poorly when Hessian is nearly indefinite
- Cost per iteration: $O\left(n^{3}\right)$

Example:

https:/ /en.wikipedia.org/wiki/Rosenbrock_function

Iclicker question:

Recall Newton's method and the steepest descent method for minimizing a function $f(\boldsymbol{x}): \mathcal{R}^{n} \rightarrow \mathcal{R}$. How many statements below describe the Newton Method's only (not both)?

1. Convergence is linear
2. Requires a line search at each iteration
3. Evaluates the Gradient of $f(\boldsymbol{x})$ at each iteration
4. Evaluates the Hessian of $f(\boldsymbol{x})$ at each iteration
5. Computational cost per iteration is $O\left(n^{3}\right)$
A) 1
B) 2
C) 3
D) 4
E) 5
