Optimization

Optimization

Goal: Find the **minimizer** x^* that minimizes the **objective (cost)** function $f(x): \mathbb{R}^n \to \mathbb{R}$

Unconstrained Optimization

 $f(\boldsymbol{x}^*) = \min_{\boldsymbol{x}} f(\boldsymbol{x})$

Constrained Optimization

$$f(\mathbf{x}^*) = \min_{\mathbf{x}} f(\mathbf{x})$$

s.t. $\mathbf{g}(\mathbf{x}) = \mathbf{0} \longrightarrow$ Equality constraints
 $\mathbf{h}(\mathbf{x}) \leq \mathbf{0} \longrightarrow$ Inequality constraints

Optimization

• What if we are looking for a maximizer *x**?

$$f(\boldsymbol{x}^*) = \max_{\boldsymbol{x}} f(\boldsymbol{x})$$

We can instead solve the minimization problem

$$f(\boldsymbol{x}^*) = \min_{\boldsymbol{x}}(-f(\boldsymbol{x}))$$

- What if constraint is h(x) > 0?
- What if method only has inequality constraints?

Calculus problem: maximize the rectangle area subject to perimeter constraint

$\max_{d \in \mathcal{R}^2}$	$f(d_1, d_2) = d_1 \times d_2$
such that	$g(d_1, d_2) = 2(d_1 + d_2) - 20 \le 0$

Demo: Constrained-Problem-2D

$$Perimeter = 2(d_1 + d_2)$$

Does the solution exists? Local or global solution?

several minimizers (more than one) Types of optimization problems

$$f(\boldsymbol{x}^*) = \min_{\boldsymbol{x}} f(\boldsymbol{x})$$

f: nonlinear, continuous and smooth

Gradient-free methods

Evaluate $f(\mathbf{x})$

Gradient (first-derivative) methods

Evaluate $f(\mathbf{x}), \nabla f(\mathbf{x})$

Second-derivative methods

Evaluate $f(\mathbf{x}), \nabla f(\mathbf{x}), \nabla^2 f(\mathbf{x})$

Taking derivatives...

 $f: \mathbb{R}^n \to \mathbb{R}$ $f(x) = f(x_1, x_2, \dots, x_n)$ $\nabla f(\underline{x}) = \begin{bmatrix} \frac{\partial F}{\partial x_1} \\ \frac{\partial F}{\partial x_2} \\ \vdots \\ \frac{\partial F}{\partial x_n} \end{bmatrix}$ -gradient ----- $\frac{\partial^2 f}{\partial^2 f}$ $\frac{\partial^2 f}{\partial x^1}$ $\overline{\Delta_{s}^{2}f(x)} = \overline{H}(x) = \begin{bmatrix} \overline{\partial_{s}^{1}f} & \overline{\partial_{s}^{1}f} & \overline{\partial_{s}^{1}f} & \overline{\partial_{s}^{1}f} \\ \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} \\ \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} \\ \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} \\ \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} \\ \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} \\ \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} \\ \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} \\ \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} \\ \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} \\ \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} \\ \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} & \overline{\partial_{s}^{2}f} \\ \overline{\partial_{s}^{2}f$ <u>9zt</u> <u>9zt</u> <u>9zt</u> <u>9zt</u> nxn matrix 1

What is the optimal solution?

$$f(\boldsymbol{x}^*) = \min_{\boldsymbol{x}} f(\boldsymbol{x})$$

(First-order) Necessary condition

$$f'(x)=0$$

$$\nabla f(\boldsymbol{x}) = \boldsymbol{0}$$

(Second-order) Sufficient condition

 $f^{\prime\prime}(x) > 0$

 $\nabla^2 f(\mathbf{x}) = H_f$ is positive definite

$\min_{x} f(x)$						
First-order necessary condition						
$\rightarrow \nabla f(x) = 0$		Second-order	sufficient a	ondition		
		-> He is positive definite				
	eigenvalues of H _f (x*)	$H_{f}(X^{*})$	Critical point			
	all positive	pos. def.	minimizer			
	all negative	neg. def.	maximizer			
	neg. and pos.	indefinite	saddle			

Example (1D)

Consider the function
$$f(x) = \frac{x^4}{4} - \frac{x^3}{3} - 11 x^2 + 40x$$

Find the stationary point and check the sufficient condition

Example (ND)

Consider the function $f(x_1, x_2) = 2x_1^3 + 4x_2^2 + 2x_2 - 24x_1$

Find the stationary point and check the sufficient condition

 $\nabla f = \begin{bmatrix} 6x_1^2 - 24 \\ 8x_2 + 2 \end{bmatrix} \begin{bmatrix} 0 \\ - \end{pmatrix} \xrightarrow{X_1 = \pm 2} \\ X_2 = -0.25$ $H_{f} = \begin{bmatrix} 12x_1 & 0 \\ 0 & 8 \end{bmatrix}$ $X^{*} = \begin{bmatrix} 2 \\ -0.25 \end{bmatrix} \rightarrow H_{f} = \begin{bmatrix} 24 & 0 \\ 0 & 8 \end{bmatrix} \xrightarrow{\text{positive}}_{\text{eigenvalues}} \\ \Rightarrow \text{ pos. def } \end{bmatrix}$ $x^* = \begin{bmatrix} -2 \\ -0.25 \end{bmatrix} \longrightarrow H_f = \begin{bmatrix} -24 & 0 \\ 0 & 8 \end{bmatrix} \implies indefinite$

Optimization in 1D: Golden Section Search

- Similar idea of bisection method for root finding
- Needs to bracket the minimum inside an interval
- Required the function to be unimodal

A function $f: \mathcal{R} \to \mathcal{R}$ is unimodal on an interval [a, b]

- ✓ There is a unique $x^* \in [a, b]$ such that $f(x^*)$ is the minimum in [a, b]
- ✓ For any $x_1, x_2 \in [a, b]$ with $x_1 < x_2$

•
$$x_2 < \mathbf{x}^* \Longrightarrow f(x_1) > f(x_2)$$

• $x_1 > \mathbf{x}^* \Longrightarrow f(x_1) < f(x_2)$

Such method would in general require 2 new function evaluations per iteration. How can we select the points x_2 , x_4 such that only one function evaluation is required?

Golden Section Search

What happens with the length of the interval after one iteration?

$$h_1 = \tau h_o$$

Or in general: $h_{k+1} = \tau h_k$

Hence the interval gets reduced by au

(for bisection method to solve nonlinear equations, $\tau=0.5$)

For recursion:

$$\tau h_{1} = (1 - \tau) h_{o}$$

$$\tau \tau h_{o} = (1 - \tau) h_{o}$$

$$\tau^{2} = (1 - \tau)$$

$$\tau = 0.618$$

Demo: Golden Section Proportions

Golden Section Search

- Derivative free method!
- Slow convergence:

$$\lim_{k \to \infty} \frac{|e_{k+1}|}{|e_k|} = 0.618 \qquad r = 1 \ (linear \ convergence)$$

• Only one function evaluation per iteration

Iclicker question

Consider running golden section search on a function that is unimodal. If golden section search is started with an initial braket of [-10, 10], what is the length of the new bracket after 1 iteration?

A) 20
B) 10
C) 12.36
D) 7.64

Newton's Method

Using Taylor Expansion, we can approximate the function f with a quadratic function about x_0

$$f(x) \approx f(x_0) + f'(x_0) (x - x_0) + \frac{1}{2} f''(x_0) (x - x_0)^2$$

And we want to find the minimum of the quadratic function using the first-order necessary condition

$$f'(x) = 0 \implies f'(x_0) + f''(x_0)(x - x_0) = 0$$
$$h = (x - x_0) \implies h = \frac{-f'(x_0)}{f''(x_0)}$$

Note that this is the same as the step for the Newton's method to solve the nonlinear equation f'(x) = 0

Newton's Method

• Algorithm:

 $x_0 =$ starting guess

 $x_{k+1} = x_k - f'(x_k) / f''(x_k)$

• Convergence:

- Typical quadratic convergence
- Local convergence (start guess close to solution)
- May fail to converge, or converge to a maximum or point of inflection

Demo: "Newton's method in 1D" And "Newton's method Initial Guess"

Newton's Method (Graphical Representation)

lclicker

Consider the function $f(x) = 4 x^3 + 2 x^2 + 5 x + 40$

If we use the initial guess $x_0 = 2$, what would be the value of x after one iteration of the Newton's method?

A)
$$x_1 = 2.852$$

B) $x_1 = 1.147$
C) $x_1 = 3.173$
D) $x_1 = 0.827$
E) NOTA

Optimization in ND: Steepest Descent Method

Given a function $f(\mathbf{x}): \mathcal{R}^n \to \mathcal{R}$ at a point \mathbf{x} , the function will decrease its value in the direction of steepest descent: $-\nabla f(\mathbf{x})$

Iclicker question: What is the steepest descent direction?

$$f(x_1, x_2) = (x_1 - 1)^2 + (x_2 - 1)^2$$

Start with initial guess:

 $\boldsymbol{x}_0 = \begin{bmatrix} 3 \\ 3 \end{bmatrix}$

Check the update:

 $x_{1} = x_{0} - \nabla f(x_{0})$ $\nabla f(x) = \begin{bmatrix} 2(x_{1} - 1) \\ 2(x_{2} - 1) \end{bmatrix}$ $x_{1} = \begin{bmatrix} 3 \\ 3 \end{bmatrix} - \begin{bmatrix} 4 \\ 4 \end{bmatrix} = -\begin{bmatrix} 1 \\ 1 \end{bmatrix}$

How far along the gradient direction should we go?

$$f(x_1, x_2) = (x_1 - 1)^2 + (x_2 - 1)^2$$

Update the variable with: $\mathbf{x}_{k+1} = \mathbf{x}_k - \alpha_k \nabla f(\mathbf{x}_k)$

How far along the gradient should we go? What is the "best size" for α_k ?

A) 0

B) 0.5

- C) (
- D) 2
- E) Cannot be determined

$$f(x_1, x_2) = (x_1 - 1)^2 + (x_2 - 1)^2$$

Algorithm:

Initial guess: \boldsymbol{x}_0

Evaluate: $\boldsymbol{s}_k = -\boldsymbol{\nabla} f(\boldsymbol{x}_k)$

Perform a line search to obtain α_k (for example, Golden Section Search)

$$\alpha_k = \operatorname*{argmin}_{\alpha} f(\boldsymbol{x}_k + \alpha \, \boldsymbol{s}_k)$$

Update: $\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{s}_k$

Line search XKHI = XK - C/K VF(XK) what is are such that f(Xe+1) is minimized? $\min_{\alpha} f\left(\frac{X_{k} - \alpha \, \nabla f(X_{k})}{X_{k+1}}\right)$ Necessary condition: $\frac{df}{da} = 0$ chain rule: $\frac{df}{d\alpha} = \frac{df}{dx_{k+1}} \quad \frac{dx_{k+1}}{d\alpha} = -\nabla f(x_k)$ $= -\nabla f(X_{k+1}) \nabla f(X_k) = 0$ Vf(XK+1) is orthogonal to VF(XK)

Iclicker question:

Consider minimizing the function

$$f(x_1, x_2) = 10(x_1)^3 - (x_2)^2 + x_1 - 1$$

Given the initial guess

$$x_1 = 2, x_2 = 2$$

what is the direction of the first step of gradient descent?

A)
$$\begin{bmatrix} -61\\ 4 \end{bmatrix}$$
 C) $\begin{bmatrix} -120\\ 4 \end{bmatrix}$
B) $\begin{bmatrix} -61\\ 2 \end{bmatrix}$ D) $\begin{bmatrix} -121\\ 4 \end{bmatrix}$

Newton's Method

Using Taylor Expansion, we build the approximation:

$$f(\mathbf{x} + \mathbf{s}) \approx f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{s} + \frac{1}{2} \mathbf{s}^T \mathbf{H}_f(\mathbf{x}) \mathbf{s} = \hat{f}(\mathbf{s})$$

And we want to find the minimum $\hat{f}(s)$, so we enforce the first-order necessary condition

$$\nabla \hat{f}(s) = \mathbf{0} \implies \nabla f(x) + \frac{1}{2} 2 H_f(x) s = 0$$
$$\implies H_f(x) s = -\nabla f(x)$$

Which becomes a system of linear equations where we need to solve for the Newton step *S*

Newton's Method

Algorithm: Initial guess: \boldsymbol{x}_0

Solve:
$$H_f(x_k) s_k = -\nabla f(x_k)$$

Update: $x_{k+1} = x_k + s_k$

Note that the Hessian is related to the curvature and therefore contains the information about how large the step should be.

Iclicker question

To find a minimum of the function $f(x, y) = 3x^2 + 2y^2$, which is the expression for one step of Newton's method?

A)
$$\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \end{bmatrix} - \begin{bmatrix} 6 & 0 \\ 0 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 6x_k \\ 4y_k \end{bmatrix}$$

B) $\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = -\begin{bmatrix} 6 & 0 \\ 0 & 4 \end{bmatrix}^{-1} \begin{bmatrix} 6x_k \\ 4y_k \end{bmatrix}$
C) $\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} 6 & 0 \\ 0 & 4 \end{bmatrix}^T \begin{bmatrix} 6x_k \\ 4y_k \end{bmatrix}$
D) $\begin{bmatrix} x_{k+1} \\ y_{k+1} \end{bmatrix} = \begin{bmatrix} x_k \\ y_k \end{bmatrix} - \begin{bmatrix} 6 & 0 \\ 0 & 4 \end{bmatrix}^T \begin{bmatrix} 6x_k \\ 4y_k \end{bmatrix}$

When using the Newton's Method to find the minimizer of this function, estimate the number of iterations it would take for convergence?

A) 1 B) 2-5 C) 5-10 D) More than 10 E) Depends on the initial guess

Newton's Method Summary

Algorithm: Initial guess: \boldsymbol{x}_0 Solve: $\boldsymbol{H}_f(\boldsymbol{x}_k) \, \boldsymbol{s}_k = -\boldsymbol{\nabla} f(\boldsymbol{x}_k)$ Update: $\boldsymbol{x}_{k+1} = \boldsymbol{x}_k + \boldsymbol{s}_k$

About the method...

- Typical quadratic convergence 😇
- Need second derivatives \mathfrak{S}
- Local convergence (start guess close to solution)
- Works poorly when Hessian is nearly indefinite
- Cost per iteration: $O(n^3)$

Demo: "Newton's method in n dimensions"

Demo: "Newton's method in n dimensions"

Example:

https://en.wikipedia.org/wiki/Rosenbrock_function

Iclicker question:

Recall Newton's method and the steepest descent method for minimizing a function $f(\mathbf{x}): \mathbb{R}^n \to \mathbb{R}$. How many statements below describe the Newton Method's only (not both)?

- 1. Convergence is linear
- 2. Requires a line search at each iteration
- 3. Evaluates the Gradient of f(x) at each iteration
- 4. Evaluates the Hessian of $f(\mathbf{x})$ at each iteration
- 5. Computational cost per iteration is $O(n^3)$

A) 1 B) 2 C) 3 D) 4 E) 5