Truncation errors: using Taylor series to approximate functions

Approximating functions using polynomials:

Let's say we want to approximate a function $f(x)$ with a polynomial

$$
f(x)=a_{o}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots
$$

For simplicity, assume we know the function value and its derivatives at $x_{o}=0$ (we will later generalize this for any point). Hence,

$$
f^{\prime}(x)=a_{1}+2 a_{2} x+3 a_{3} x^{2}+4 a_{4} x^{3}+\cdots
$$

$$
f^{\prime \prime}(x)=2 a_{2}+(3 \times 2) a_{3} x+(4 \times 3) a_{4} x^{2}+\cdots
$$

$$
f^{\prime \prime \prime}(x)=(3 \times 2) a_{3}+(4 \times 3 \times 2) a_{4} x+\cdots
$$

$$
f^{\prime v}(x)=(4 \times 3 \times 2) a_{4}+\cdots
$$

$$
f^{(i)}=(i \times(i-1) \times(i-2) \times \ldots \times 1) a_{i}
$$

$$
\begin{array}{lll}
f(0)=a_{o} & f^{\prime \prime}(0)=2 a_{2} & f^{\prime v}(0)=(4 \times 3 \times 2) a_{4} \\
f^{\prime}(0)=a_{1} & f^{\prime \prime \prime}(0)=(3 \times 2) a_{3} & \\
\hline
\end{array}
$$

Taylor Series

Taylor Series approximation about point $x_{o}=0$

$$
f(x)=a_{o}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}+a_{4} x^{4}+\cdots
$$

$$
f(x)=\sum_{i=0}^{\infty} a_{i} x^{i}
$$

\rightarrow approximate function values \rightarrow approximate derivatives \rightarrow estimating errors

Taylor Series

In a more general form, the Taylor Series approximation about point x_{o} is given by:
$f(x)=f\left(x_{o}\right)+f^{\prime}\left(x_{o}\right)\left(x-x_{o}\right)+\frac{f^{\prime \prime}\left(x_{o}\right)}{2!}\left(x-x_{o}\right)^{2}+\frac{f^{\prime \prime \prime}(0)}{3!}\left(x-x_{o}\right)^{3}+\cdots$
$f(x)=\sum_{i=0}^{\infty} \frac{f^{(i)}\left(x_{o}\right)}{i!}\left(x-x_{o}\right)^{i}$

Example:
Assume a finite Taylor series approximation that converges everywhere for a given function $f(x)$ and you are given the following information:

$$
f(1)=2 ; f^{\prime}(1)=-3 ; f^{\prime \prime}(1)=4 ; f^{(n)}(1)=0 \forall n \geq 3
$$

Evaluate $f(4)$

$$
\begin{aligned}
& f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\frac{f^{\prime \prime \prime}\left(x_{0}\right)}{3!}\left(x-x_{0}\right)^{3}+\cdots \\
& \text { Make } x=4 \text { and } x_{0}=1 \\
& f(4)=f(1)+f^{\prime}(1)(4-1)+\frac{f^{\prime \prime}(1)}{2}(4-1)^{2}=2+(-3)(4-1)+\frac{4}{2}(4-1)^{2} \\
&=2-9+18 \Rightarrow f(4)=11
\end{aligned}
$$

Taylor Series
We cannot sum infinite number of terms, and therefore we have to truncate.

$$
x=h+x_{0}
$$

How big is the error caused by truncation? Let's write $\overparen{h=x-x_{0}}$

$$
\begin{aligned}
& f\left(x_{0}+h\right)=f^{f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right) h}+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!} h^{2}+\frac{f^{\prime \prime \prime}\left(x_{0}\right) h^{3}}{3!}+\ldots \\
& \underbrace{f\left(x_{0}+h\right)}_{\text {exact }}=\underbrace{f_{\text {what }}^{(i)}\left(x_{0}\right) h^{i}}_{\begin{array}{c}
\text { truncated part } \\
\sum_{i=0}^{n} \\
\sum_{\text {Taylor approximation }}^{n} \\
\text { of degree } n) \\
t_{n}(x)
\end{array}}+\underbrace{\sum_{i=n+1}^{\infty}}_{\text {we are neglecting }} \frac{f^{(i)}\left(x_{0}\right) h^{i}}{i!} \\
& f(x)
\end{aligned}
$$

Taylor series with remainder
Let f be $(n+1)$-times differentiable on the interval $\left(x_{o}, x\right)$ with $f^{(n)}$ continuous on $\left[x_{o}, x\right]$, and $h=x-x_{o}$
error $=$ exact - approximation

$$
\begin{aligned}
\text { error } & =f(x)-t_{n}(x)=\sum_{i=n+1}^{\infty} \frac{f^{(i)}\left(x_{0}\right)}{i!} h^{i} \\
& =\frac{f^{(n+1)}\left(x_{0}\right) h^{n+1}}{(n+1)!}+\frac{f^{(n+2)}\left(x_{0}\right)}{(n+2)!} h^{n+2}+\cdots
\end{aligned}
$$

$\underbrace{}_{\text {dominant term }}$ when $h \rightarrow 0 \quad$ (or $x \rightarrow x_{0}$)

$$
\text { error } \leqslant M h^{n+1} \text { or error }=O\left(h^{n+1}\right)
$$

Taylor series with remainder
Let f be $(n+1)$-times differentiable on the interval $\left(x_{o}, x\right)$ with $f^{(n)}$ continuous on $\left[x_{o}, x\right]$, and $h=x-x_{o}$
error $=$ exact - approximation
Remainder Theorem :

$$
\begin{aligned}
R_{n}(x) & =f(x)-t_{n}(x) \\
& =\sum_{i=n+1}^{\infty} \frac{f^{(i)}\left(x_{0}\right)}{i!} h^{i}
\end{aligned}
$$

$$
R_{n}(x)=\frac{f^{n+1}(\xi)}{(n+1)!}\left(\xi-x_{0}\right)^{n+1}
$$

where $\xi \in\left(x_{0}, x\right)$
since $\left|\xi-x_{0}\right| \leqslant|h|$

$$
\begin{aligned}
& \text { since }\left|\xi-x_{0}\right| \leqslant|h| \\
& \left|R_{n}\right| \leqslant\left|\frac{f^{(n+1)}(\xi)}{(n+1)!} h^{n+1}\right| \quad \underbrace{\text { note }} \begin{array}{l}
M=\left|\frac{f^{(n+1)}(\xi)}{(n+1)!}\right|
\end{array} \begin{array}{lll}
1 & \xi & 1 \\
x_{0} & x \\
k & h
\end{array}
\end{aligned}
$$

Graphical representation:

$$
\begin{aligned}
& f^{\prime}\left(x_{0}\right)=\frac{d y}{d x} \Rightarrow d y=f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \\
& t_{1}(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right) \quad \checkmark \ddot{ } \\
& \text { error }=f(x)-t_{1}(x)=\text { Remainder } \\
& \text { error } \leqslant \frac{f^{\prime \prime}(\xi)\left(x-x_{0}\right)^{2}}{2!} \quad \xi \in\left(x_{0}, x\right) \\
& \text { error }=O\left(h^{2}\right)
\end{aligned}
$$

suppose interval is reduced by half. what happens to the error?

$$
\begin{array}{ll}
e_{1}-h_{1}^{2} & \frac{e_{1}}{e_{2}}=2^{2} \\
e_{2}-\left(\frac{h_{1}}{2}\right)^{2} & e_{2}=\frac{e_{1}}{4} \\
\end{array}
$$

Example:
Given the function

$$
f(x)=\frac{1}{(20 x-10)}
$$

Write the Taylor approximation of degree 2 about point $x_{o}=0$
Given the function: $f(x)=\frac{1}{20 x-10}$
Write the Taylor approximation of degree 2 about $x_{0}=0$

$$
\begin{array}{ll}
f^{\prime}(x)=\frac{-1(20)}{(20 x-10)^{2}} ; f^{\prime}(0)=\frac{-20}{(-0)^{2}}=-\frac{1}{5} \\
f^{\prime \prime}(x)=\frac{+20(20 x-10) 2(20)}{(20 x-10)^{4}}=\frac{-800}{(20 x-10)^{3}} & f^{\prime \prime}(0)=\frac{-800}{1000}=-4 / 5 \\
t_{2}(x)=-\frac{1}{10}-\frac{1}{5} x-\frac{1}{2}\left(\frac{4}{5} x^{2} \quad\right. & \left|R_{2}(x)\right| \leqslant \left\lvert\, \frac{f^{\prime \prime}(0)}{3!} x^{3} \quad\right. \text { error }=0\left(x^{3}\right)
\end{array}
$$

$$
\begin{aligned}
& y=a x^{b}=\text { error } \\
& \log (y)=\log (a)+\underbrace{b}_{\text {alone! }} \log (x)
\end{aligned}
$$

slope!

$$
b=\frac{\log 10^{-3}-\log 10^{-6}}{\log 10^{1}-\log 10^{-2}}=\frac{-3+6}{-1+2}=\frac{3}{1} \quad \Rightarrow \text { error }=O\left(x^{3}\right)
$$

Example:
Given the function

$$
f(x)=\sqrt{-x^{2}+1}
$$

Write the Taylor approximation of degree 2 about point $x_{o}=0$

$$
\begin{aligned}
& f(x)=f\left(x_{0}\right)+f^{\prime}\left(x_{0}\right)\left(x-x_{0}\right)+\frac{f^{\prime \prime}\left(x_{0}\right)}{2!}\left(x-x_{0}\right)^{2}+\cdots \\
& f(0)=1 \\
& f^{\prime}(x)=\frac{1}{7}\left(-x^{2}+1\right)^{-1 / 2}(-2 x)=-x\left(1-x^{2}\right)^{-1 / 2} \rightarrow f^{\prime}(0)=0 \\
& f^{\prime \prime}(x)=-\frac{1}{2} x\left(1-x^{2}\right)^{3 / 2}(-2 x)-\left(1-x^{2}\right)^{-1 / 2} \rightarrow f^{\prime \prime}(0)=-1 \\
& \hat{f}(x)=1-\frac{1}{2}(x)^{2} \quad \text { or } \quad t_{2}(x)=1-\frac{x^{2}}{2}
\end{aligned}
$$

$$
f(x)=\sqrt{-x^{2}+1}
$$

$$
\text { error }=t_{2}-f(x)
$$

- "good" approximation close to $x_{0}=0$
- error increases when x moves away from x_{0}
- use log-og plot to better visualize what is happening close to x_{0}.

$$
\begin{aligned}
& \text { error }=t_{2}(x)-f(x) \\
& f(x)=\sqrt{-x^{2}+1} \\
& t_{2}(x)=1-x^{2} / 2 \\
& \left|R_{2}\right| \leqslant\left|\frac{f^{\prime \prime}(\xi)}{3!} h^{3}\right|=O\left(h^{3}\right)
\end{aligned}
$$

here $h=x-x_{0}=x$
Let's get Big-0 of error from the plot!

$$
\text { slope }=\frac{\log \left(0^{-5}\right)-\log \left(10^{-a}\right)}{\log \left(10^{-1}\right)-\log \left(10^{-2}\right)}=\frac{-5+9}{-1+2}=4 \quad \Longrightarrow \text { error }=O\left(h^{4}\right)
$$

what happened here!
$\rightarrow f^{\prime \prime \prime}(x)=0$ hence the next term that is not zero is $f^{\prime \prime}(x)$

Example:
Error Order for Taylor series

The series expansion for e^{x} about 2 is

$$
\underbrace{\exp (2) \cdot\left(1+(x-2)+\frac{(x-2)^{2}}{2!}+\frac{(x-2)^{3}}{3!}+\ldots\right) . \quad \text { error }=O\left((x-2)^{4}\right) .}
$$

If we evaluate e^{x} using only the first four terms of this expansion (i.e.
only terms up to and including $\frac{(x-2)^{3}}{3!}$), then what is the error in big-0 notation?

$$
e \leqslant M(x-2)^{4}
$$

as $x \rightarrow 2$, e becomes smaller

