
Rounding errors

Example
Show demo: “Waiting for 1”.
Determine the double-precision machine representation for 0.1

0.1 = 0.000110011 0011… & = 1.100110011… &×2)*

Demo. FloatingPoint us Program Logic

f
-

M = -4 → C = Mt1023 → C = 1019

c =@I I I I I I I O I I)
z cannot be

-stored
f = 1001 1001 1001 1001 to..1001/1001

/?] / 1001
-
- . .

.

1001 4
f = 52bit

1001 - - - - . 1010

Machine floating point number
• Not all real numbers can be exactly represented as a machine floating-point

number.
• Consider a real number in the normalized floating-point form:

! = ±1. &'&(&) …&+ …× 2.
• The real number ! will be approximated by either !/ or !0, the nearest two

machine floating point numbers.

!!/ !00 +∞
P

Rounding by chopping :

(nearest
epnumber

"smaller
"

)
m

N
-
= 1. bibabs . . . bnx2 than a

(
nearest Fp

Nt = I. b , baby . . . bnx
2Mt 0.000 . . .

0182M member

-
"

larger
"

2-
n

= Em
than N)

!!" !#0 +∞

!" = 1. *+*,*- …*/× 22
! = 1. *+*,*- …*/ …× 22Exact number:

!# = 1. *+*,*- …*/× 22+ 0.000…01× 22
32

Gap between !# and !": !# − !" = 32 × 22

Examples for single precision:
!# and !" of the form 5 × 2"+6: !# − !" = 2"--≈ 10"+6
!# and !" of the form 5 × 29: !# − !" = 2"+:≈ 2× 10";
!# and !" of the form 5 × 2,6: !# − !" = 2"-≈ 0.125
!# and !" of the form 5 × 2;6: !# − !" = 2-=≈ 10++

The interval between successive floating point numbers is not uniform: the interval is smaller as the
magnitude of the numbers themselves is smaller, and it is bigger as the numbers get bigger.

EmX2m#

""""'I
smallergG@gap.s

(2-23×2-10=2-33)
(2-23×24=2

- k)
(2-23×220=2-3)
(2-23×260=237)

Gap between two successive machine floating point numbers

A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.
1.00 (×27 = 1
1.01 (×27 = 1.25
1.10 (×27 = 1.5
1.11 (×27 = 1.75

1.00 (×2:' = 0.5
1.01 (×2:' = 0.625
1.10 (×2:' = 0.75
1.11 (×2:' = 0.875

1.00 (×2' = 2
1.01 (×2' = 2.5
1.10 (×2' = 3.0
1.11 (×2' = 3.5

1.00 (×2(= 4.0
1.01 (×2(= 5.0
1.10 (×2(= 6.0
1.11 (×2(= 7.0

1.00 (×2> = 8.0
1.01 (×2> = 10.0
1.10 (×2> = 12.0
1.11 (×2> = 14.0

1.00 (×2? = 16.0
1.01 (×2? = 20.0
1.10 (×2? = 24.0
1.11 (×2? = 28.0

1.00 (×2:(= 0.25
1.01 (×2:(= 0.3125
1.10 (×2:(= 0.375
1.11 (×2:(= 0.4375

1.00 (×2:> = 0.125
1.01 (×2:> = 0.15625
1.10 (×2:> = 0.1875
1.11 (×2:> = 0.21875

1.00 (×2:? = 0.0625
1.01 (×2:? = 0.078125
1.10 (×2:? = 0.09375
1.11 (×2:? = 0.109375

-

~ Machinehe 2 Iepsilon
Em =

2-2=0.25

larger gaps

do
:*

GEE.IE?o7Es

Rounding
The process of replacing ! by a nearby machine number is called
rounding, and the error involved is called roundoff error.

Round to nearest:

!!" !#0 +∞!!# !"−∞

Round
towards
+∞

Round
towards
−∞

Round
towards
zero

Round
towards
zero

! is positive number ! is negative number

Round up (ceil)

Round down (floor)

Round by chopping:

I = film) = round Ca)

round towards too round toward zero

fl (a) = At fl (a) = N -
round towards zero round towards -A

ft la) = n - fl(a) = set

round towards closest FP
.
(down or up)

Rounding (roundoff) errors
Consider rounding by chopping:

• Absolute error:

• Relative error:

r

OR
fund -atflat- atree
• A O

N
-

A Nt

Ifan) -self Int - n- I II

or I flea) -self €m×zm
Em×2m

m

HAaL#sln+-n=Emn=Enf2mm⇐qe2)
-

a

er Relative error dueerff.jp??7my-serEEmtoroundiugLgetFPrepresentation) is less
than machine epsilon .

Rounding (roundoff) errors

Single precision: Floating-point
math consistently introduces relative
errors of about 10#$. Hence, single
precision gives you about 7
(decimal) accurate digits.

%# %&

'% − %
|%| ≤ 2#,-≈ 1.2×10#$ '% − %

|%| ≤ 2#1,≈ 2.2×10#23

% = 1. 525,5- …57 …× 28

Double precision: Floating-point
math consistently introduces
relative errors of about 10#23.
Hence, double precision gives you
about 16 (decimal) accurate
digits.

ers 5×10

Er of40k ⇒ he -htt

Em
IT

< 5×10
- h

D

1-
D

Ruleofthumblf

Iclicker question
Assume you are working with IEEE single-precision numbers. Find the smallest
number ! that satisfies

2# + ! ≠ 2#

A) 2()*+,
B) 2()*..
C) 2(0.
D) 2()0
E) 2(#

in KW xta # X

gone?#*#
Xt

if acgap :

27A =
28

a else

28ta=hextFP
I

28 next FP

I
gap

gap .- Emx8= 2-23×28=55 → a > 2-
'5

Rutgers: qx2M t a f- qx2m → a > Emzm
mum -

N

Demo

5

A =D p= to

while C Atp) >
a :

P -- PA
print Cp)

Loop will terminate when atp = a

double precision : p = gap =Io;÷
105

=

to
"

Mathematical properties of FP operations
Not necessarily associative:
For some ! , #, $ the result below is possible:

! + # + $ ≠ ! + (# + $)

Not necessarily distributive:
For some ! , #, $ the result below is possible:

$! + # ≠ $! + $ #
Not necessarily cumulative:
Repeatedly adding a very small number to a large number may do
nothing Demo: FP-arithmetic

Floating point arithmetic
Consider a number system such that ! = ±1. &'&(&)×2,
for - ∈ [−4,4] and &4 ∈ {0,1}.

8 = 1.101 (×2'
& = 1.001 (×2'

Rough algorithm for addition and subtraction:
1. Bring both numbers onto a common exponent
2. Do “grade-school” operation
3. Round result

• Example 1: No rounding needed

①
10¥21

.

0110×22=1.011×5 ✓

Floating point arithmetic
Consider a number system such that ! = ±1. &'&(&)×2,
for - ∈ [−4,4] and &4 ∈ {0,1}.

8 = 1.101 (×29
& = 1.000 (×29

• Example 2: Require rounding

8 = 1.100 (×2'
& = 1.100 (×2:'

• Example 3:

.

①
-10.101820

=
1.0101×21Topping 1.010×2

' '

⑤ -0.01100×22×2-1=0.01100×21
- 1.100×2

'

+ 0.01100×2
'

-

I.111×2
' Cno rounding needed)

Floating point arithmetic
Consider a number system such that ! = ±1. &'&(&)&*×2-
for . ∈ [−4,4] and &5 ∈ {0,1}.

9 = 1.1011 (×2'
& = 1.1010 (×2'

• Example 4:

} numbersare
" close

"

to

each other

C = A -b 1.1011×2'

-

1.1010×21
-

0.0001×2
'
-
A.?×2'

normalize IT
machine choice

NOT 1.000×2
'

SIGNIFICANT Digits to
-

-

Cancellation
! = 1. !%!&!'!(!)!* …!, …×2/%
0 = 1. 0%0&0'0(0)0* …0, …×2/&

Suppose ! ≈ 0 and single precision (without loss of generality)

! = 1. !%!&!'!(!)!* …!&2!&%10!&(!&)!&*!&4 … ×2/

0 = 1. !%!&!'!(!)!* …!&2!&%110&(0&)0&*0&4 …×2/

Demo

µ:t÷÷:{
.

on

Hlb - a) = 0.0000....0001×2
'm

→ normalize Catastrophic
-ntm

cancellation

fllb -a) 1.0000 . . .

.00×2-not significant bits Cspurious
n bits

zeros !)

Example of cancellation:
Suppose A= 1.loflasasat

. . .

x2 '

b=L.IO/Obsbsbt--.x2
'

Using machine
where n=4 → a -1-1011×2

'

- 6=1.1010×2
'

-

1. 1011 As Asat - - -

X
2
'

A-b ⇒ ,

① 1.1010 be babe - - -x2

-

0.0001×2
'

machine y
when done by

"hand
-3

resultingI 1. C,CzGC4X2with -

cancellation significant digits
1. 0000×2-3 from AsA6A7A8
-

not significant digits
⑦bsbobtbs

Cancellation
! = 1. !%!&!'!(!)!* …!, …×2/%
0 = 1. 0%0&0'0(0)0* …0, …×2/&

For example, assume single precision and 11 = 12 + 18 (without loss of
generality), i.e. ! ≫ 0

56(!) = 1. !%!&!'!(!)!* …!&&!&'×2/9%:

56(0) = 1. 0%0&0'0(0)0* …0&&0&'×2/

1. !%!&!'!(!)!* …!&&!&'×2/9%:
0.0000…0010%0&0'0(0)×2/9%:+

In this example, the result 56 ! + 0 only included 6 bits of precision from
56(0). Lost precision!

Loss of Significance

How can we avoid this loss of significance? For example, consider the
function ! " = "$ + 1 − 1

If we want to evaluate the function for values " near zero, there is a
potential loss of significance in the subtraction.

Let 's consider five -decimal digit arithmetic and
evaluate that x= 10-3

fG) = 110¥ - I = zero ! (since to
'
is smaller

than machine

epsilon Ems to
-5)

How can we obtain better
results

and avoid cancellation ?

Loss of Significance

Re-write the function as ! " = $%
$%&'(' (no subtraction!)

Re-writethe function to
"eliminate

" subtraction of

similar numbers

far
.
. ret - I =D-D
= =

,JEET t I

tho't ;o÷ ,

-
- EI Koto.YEE's:''not:tm%:iEano⇒

Example:
If x = 0.3721448693 and y = 0.3720214371 what is the relative error in the computation of
(x − y) in a computer with five decimal digits of accuracy?

If
exact values

approximations using 5 decimal digits
I --0.37214

relative error due to rounding :

YT
- 0.37202

17-2,11=1.3×10-5 .

er: I @-y) - Cnn -g) I Irelative error
of difference)
-

In -y I
-2

= 0.0001234322
- 0.00012 e 3×10 → the

error

er- due to the

0.0001234322 subtraction is
" large

"

compared to the error
'akee to

rounding because of cancelation .

	Lecture5-Sept10-prep-2.pdf
	Lecture6-Sept12-prep.pdf

