
Floating point representation

(Unsigned) Fixed-point representation
The numbers are stored with a fixed number of bits for the integer part
and a fixed number of bits for the fractional part.

Suppose we have 8 bits to store a real number, where 5 bits store the
integer part and 3 bits store the fractional part:

2"2#2$2%2& 2'%2'$2'#
1 0 1 1 1.0 1 1 $

Smallest number:

Largest number:

(Unsigned) Fixed-point representation
Suppose we have 64 bits to store a real number, where 32 bits store the
integer part and 32 bits store the fractional part:

!"# …!%!#!&. (#(%(" …("% % = *
+,&

"#
!+ 2+ +*

+,#

"%
(+ 2/+

= !"#× 2"#+!"&× 2"&+⋯+ !&× 2&+(#× 2/#+(%× 2%+⋯+ ("%× 2/"%

0 ∞

(Unsigned) Fixed-point representation
Range: difference between the largest and smallest numbers possible.

More bits for the integer part ⟶ increase range

Precision: smallest possible difference between any two numbers
More bits for the fractional part ⟶ increase precision

Wherever we put the binary point, there is a trade-off between the
amount of range and precision. It can be hard to decide how much
you need of each!

"#"$"%. '$'#'(# "$"%. '$'#'(') #OR

Scientific Notation

In scientific notation, a number can be expressed in the form

! = ± $ × 10(

where $ is a coefficient in the range 1 ≤ $ < 10 and + is the exponent.

1165.7 =

0.0004728 =

Floating-point numbers
A floating-point number can represent numbers of different order of
magnitude (very large and very small) with the same number of fixed bits.

In general, in the binary system, a floating number can be expressed as

! = ± $ × 2'
$ is the significand, normally a fractional value in the range [1.0,2.0)

. is the exponent

Floating-point numbers

Numerical Form:

! = ±$ × 2' = ±(). (+(,(- …(/× 2'

Fractional part of significand
(0 bits)

Normalized floating-point numbers
Normalized floating point numbers are expressed as

! = ± 1. &'&(&) …&+× 2. = ± 1. / × 2.

where / is the fractional part of the significand, 0 is the exponent and
&1 ∈ 0,1 .

Converting floating points

Convert (39.6875)*+ = 100111.1011 / into floating point
representation

Iclicker question
Determine the normalized floating point representation
1. # × 2& of the decimal number ' = 47.125 (# in binary
representation and & in decimal)

A) 1.01110001 / × 20
B) 1.01110001 / × 22
C) 1.01111001 / × 20
D) 1.01111001 / × 22

• Exponent range:

• Precision:

• Smallest positive normalized FP number:

• Largest positive normalized FP number:

Normalized floating-point numbers

! = ± $ × 2'= ± 1. *+*,*- …*/× 2' = ± 1. 0 × 2'

Normalized floating point number scale

0
+∞−∞

Floating-point numbers: Simple example
A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.

Floating-point numbers: Simple example
A ”toy” number system can be represented as ! = ±1. &'&(×2+
for , ∈ [−4,4] and &3 ∈ {0,1}.
1.00 (×27 = 1
1.01 (×27 = 1.25
1.10 (×27 = 1.5
1.11 (×27 = 1.75

1.00 (×2:' = 0.5
1.01 (×2:' = 0.625
1.10 (×2:' = 0.75
1.11 (×2:' = 0.875

1.00 (×2' = 2
1.01 (×2' = 2.5
1.10 (×2' = 3.0
1.11 (×2' = 3.5

1.00 (×2(= 4.0
1.01 (×2(= 5.0
1.10 (×2(= 6.0
1.11 (×2(= 7.0

1.00 (×2> = 8.0
1.01 (×2> = 10.0
1.10 (×2> = 12.0
1.11 (×2> = 14.0

1.00 (×2? = 16.0
1.01 (×2? = 20.0
1.10 (×2? = 24.0
1.11 (×2? = 28.0

1.00 (×2:(= 0.25
1.01 (×2:(= 0.3125
1.10 (×2:(= 0.375
1.11 (×2:(= 0.4375

1.00 (×2:> = 0.125
1.01 (×2:> = 0.15625
1.10 (×2:> = 0.1875
1.11 (×2:> = 0.21875

1.00 (×2:? = 0.0625
1.01 (×2:? = 0.078125
1.10 (×2:? = 0.09375
1.11 (×2:? = 0.109375

Same steps are performed to obtain the negative numbers. For simplicity, we
will show only the positive numbers in this example.

! = ±1. &'&(×2+ for , ∈ [−4,4] and &3 ∈ {0,1}

• Smallest normalized positive number:

• Largest normalized positive number:

! = ±1. &'&(×2+ for , ∈ [−4,4] and &3 ∈ {0,1}

Machine epsilon
• Machine epsilon (7+): is defined as the distance (gap) between 1 and the

next largest floating point number.

Machine numbers: how floating point
numbers are stored?

Floating-point number representation
What do we need to store when representing floating point
numbers in a computer?

! = ± 1. & × 2)

! = ± * +
sign exponent significand

Initially, different floating-point representations were used in computers,
generating inconsistent program behavior across different machines.

Around 1980s, computer manufacturers started adopting a standard
representation for floating-point number: IEEE (Institute of Electrical and
Electronics Engineers) 754 Standard.

Floating-point number representation
Numerical form:

! = ± 1. & × 2)

Representation in memory:

! =

Precisions:

IEEE-754 Single precision (32 bits):

IEEE-754 Double precision (64 bits):

! =

! =

IEEE-754 Single Precision (32-bit)
! = (−1)' 1.) × 2,

sign
(1-bit)

exponent
(8-bit)

significand
(23-bit)

- . = / + -ℎ234 3

IEEE-754 Single Precision (32-bit)

! = (−1)' 1.) × 2,

67.125 = 1000011.001 1 = 1.000011001 1×22

Example: Represent the number ! = −67.125 using IEEE Single-
Precision Standard

• Machine epsilon (!"): is defined as the distance (gap) between 1
and the next largest floating point number.

= (−1)) 1. + × 2. = / = 0 + 127

IEEE-754 Single Precision (32-bit)
) 3 +

• Smallest positive normalized FP number:

• Largest positive normalized FP number:

Special Values:

! =
1) Zero:

2) Infinity: +∞ (% = 0) and −∞ % = 1

! =
3) NaN: (results from operations with undefined results)

! =

! = (−1)+ 1. - × 20 = + 1 -

IEEE-754 Double Precision (64-bit)
! = (−1)' 1.) × 2,

sign (1-bit) exponent
(11-bit)

significand
(52-bit)

- . = / + -ℎ234 3

• Machine epsilon (!"): is defined as the distance (gap) between 1
and the next largest floating point number.

= (−1)) 1. + × 2. = / = 0 + 1023

IEEE-754 Double Precision (64-bit)
) 4 +

• Smallest positive normalized FP number:

• Largest positive normalized FP number:

Subnormal (or denormalized) numbers

Subnormal (or denormalized) numbers

IEEE-754 Single precision (32 bits):

IEEE-754 Double precision (64 bits):

! = 00000000 $ = 0

! = 00000000000 $ = 0

Subnormal (or denormalized) numbers
• Noticeable gap around zero, present in any floating system, due to

normalization
• Relax the requirement of normalization, and allow the leading digit to be zero,

only when the exponent is at its minimum (! = #)
• Computations with subnormal numbers are often slow.

Representation in memory (another special case):

Numerical value:

$ =

IEEE-754 Double Precision

Stored binary
exponent (")

Significand
fraction ($)

value

00000000 0000…0000 zero
00000000 %&' $ ≠ 0 (−1), 0. . × 21234
00000001 %&' $ (−1), 1. . × 21234

11111110 %&' $ (−1), 1. . × 2235
11111111 %&' $ ≠ 0 NaN
11111111 0000…0000 infinity

6 = (−1), 1. . × 28 = 9 = " − 127, ; .

Summary for Single Precision

⋮ ⋮ ⋮

Iclicker question
A number system can be represented as ! = ±1. &'&(&)×2,
for - ∈ [−5,5] and &4 ∈ {0,1}.

1) What is the smallest positive normalized FP number:
a) 0.0625 b) 0.09375 c) 0.03125 d) 0.046875 e) 0.125

2) What is the largest positive normalized FP number:
a) 28 b) 60 c) 56 d) 32

3) How many additional numbers (positive and negative) can be
represented when using subnormal representation?
a) 7 b) 14 c) 3 d) 6 e) 16

4) What is the smallest positive subnormal number?
a) 0.00390625 b) 0.00195313 c) 0.03125 d) 0.0136719

5) Determine machine epsilon
a) 0.0625 b) 0.00390625 c) 0.0117188 d) 0.125

A number system can be represented as ! = ±1. &'&(&)&*×2-
for . ∈ [−6,6] and &5 ∈ {0,1}.

1) Let’s say you want to represent the decimal number 19.625 using the
binary number system above. Can you represent this number exactly?

2) What is the range of integer numbers that you can represent exactly using
this binary system?

