Python: brief introduction

A) cistloat, d is float
B) cistloat, dis int
C) cisint, disint

D) cisint, dis float

e

1.2. Names and values

w
i

[11213] a —

b)—

The list]| 1

2 | 3 | 1s an object, and both names

a >and

b) are bounded to the same list (values)

/

e
Modifying an object

azil,z,a] b >7

.append (4)

o

o

b.append(4) modifies the object list [1,2,3]
What happens to the name “a”?

Because “a” and “b” are bounded to the same location, they will have the same

values once the list is modified

4 | | N
Get the “id” for an object

i o~ T A - -
b >— #clear

—> rint (id , 1d(b
1121314 print (id(a), 1id(b))
} 2053127830536 2053127830536

Since “a” and “b” are bounded to the same object, then
they have the same “1d”

N lS b Check if both names have the same “id”

e

In summary ...

a = [1,2,3] _,‘ |
b= 1[1,2,3]
print ("IS ", a is Db)
print ("EQUAL", a == b) }

—> 1
a = [1,2,3]
b = a

4 | N
Mutable and immutable types

Mutable objects: can be changed after they are created (e.g. lists,
dictionaries)

Immutable objects: cannot be changed after they are created (e.g.
tuples, strings, floats)

Mutable object: List a = a

[1,2,3]

o

a += [4]
print (b)
print (a)
a is b

[E—
(\®)
(S
© 'O 'O
BB
B e e
W S5 5
t ct
U'z-\z-\
O O +

i

a —
b)
_—/

Do you get the same results when running

these two pieces of code?

_ A)YES B) NO -

Mutable object: List

L)—
[1,2,3]
a b)—
“a” gets reassigned to a new object, “b” 1s still bounded to the initial
object.

o

a=a+ [4] E——m 234
print (b)

print (a)

a is b ::E£:>P———-* 1213

The object list 1s modified, however, “a” and “b” remain bounded to the

object.
print (b) 5
print (a) _)1 2314

e

-

a = ['hello', 'goodbye'] a = ['hello’, "goodbye']
b = 'hey' b = 'hey'
A) a.append(b) C) c = a + [b]
c = a + [b] a.append(b)
a = ['hello', "goodbye']
B) b = 'hey'
c =a + [b]
a +=b>b
Results in

1.2. Names and values

Which of the following code snippets

print (a==c)

True

e
1.3. Advanced Names

fruit = 'apple’

lunch = []
lunch.append(fruit)

dinner = lunch
dinner.append('fish')

fruit = 'pear’
meals = [fruit, lunch, dinner]
print (meals)

e

1.3. Naming advanced

What is the correct output for the following code snippet?

John = 'computer_science'
Tim = John

Tim += ', math'

Anna = ['electrical’]
Julie = Anna

Julie += ['physics']
print(John, Anna)

Choice*
}\)' computer_science, math ['electrical', 'physics']
13) . computer_science, math ['electrical'l
(j)' computer_science ['electrical', 'physics']

[))' computer_science ['electrical'l

g
1.4 Indexing

a=10,1,2,3,4,5,6,7,8,9]

[— starting index

a[l] k] J — stopping index (not included)
e k — step

a=10,1,2,3,4,5,6,7,8,9]

a[l:s:2][2:-1]

What is the output for the command line above?
A) [1,3,5,7,9]

B) [1,3]

C) [3,1]

D) [9,7]

E) [9,7,5,3,1]

1.5 Control Flow

#clear
mylist = []

for i in range(50):
if i % 7 == 0:
mylist.append(i**2)

mylist

[0, 49, 196, 441, 784, 1225, 1764, 2401]

#clear
mylist = [i**2 for i in range(50) if i % 7 == 0]
print(mylist)

[0, 49, 196, 441, 784, 1225, 1764, 2401]

4 |
1.6 Functions

def add minor(person):
person.append(‘math')

def switch majors(person):
person = ['physics’']
person.append('economics ')

John = ['computer science']
Tim = John

add minor (Tim)

switch majors(John)
print(John, Tim)

Choice*
A) ['computer_science', 'economics'], ['computer_science', 'economics']
13) ['physics', 'economics'], ['computer_science'l

(:) ['physics', 'economics'], ['physics', 'economics']
[)) ['computer_science', 'math']l, ['computer_science', 'math']

]5) ['physics', 'economics'], ['computer_science', 'math']

4 .
1.7 Objects

#clear
class test:
def init (self):
self.variable = '01d’
self.Change(self.variable)
def Change(self, var):
var = 'New'
obj=test()
print (obj.variable)

A) Error message, because the function Change can't be
called in the __init function

B) ‘Old’

C) ‘New’

a=[3,4] a=[3,4]
b = [6,7] b=1[6,7]
j\) def do_stuff(a,b): (:) def do stuff(a,b):
return(a.append(5), b.append(8) a += [5]
b += [8]

do_stuff(a,b)
do stuff(a,b)

a =3
b =25
def do stuff(a,b):
13) a += 1
b += 2

do stuff(a,b)

Which code snippet does not
modify the variables?

-

e

2.2 Numpy Indexing
a =np.array([[1, 4, 9], [2, 8, 18]])

4 | N
2.3 Broadcasting

a = np.arange(9).reshape(3, 3) . a = np.arange(9).reshape(3, 3)
print(a.shape) print(a.shape)
print(a) print(a)

b = np.arange(4, 4+9).reshape(3, 3)
print (b.shape)
print(b)

b = np.arange(3)
print (b.shape)
print(b)

g

2.3 Broadcasting

Given A and B numpy arrays such that:

A.shape 1s (5.,4)
B.shape 1s (1,4)

What 1s the shape of A + B?

A)(1,4)

B)(5,1,4)

C)(5,4)

D)Not a valid operation

