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In [1]: import sys
IN_COLAB = 'google.colab' in sys.modules
if IN_COLAB: 
    !git clone https://github.com/cs357/demos-cs357.git 
    !mv demos-cs357/figures/ . 
    !mv demos-cs357/additional_files/ . 

In [2]: import numpy as np
import numpy.linalg as la
import scipy.linalg as sla
import matplotlib.pyplot as plt
%matplotlib inline 
import random 
 
import pandas as pd
from scipy import stats 
 
import sys
sys.path.append('./additional_files')

A) Data Fitting with Least Squares: simple examples

1) Fit with a line

Suppose we want to fit the points below using a line:

In [3]: n = 10
t = np.linspace(-1, 1, n)
y = 4*t  + np.random.randn(n)  + 2 
 
plt.plot(t,y,'o')
plt.grid()
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We want to use a fit function with the form:
𝑦 = + 𝑡𝑥0 𝑥1

What's the system of equations for  and ? We will solve the least squares problem by solving the Normal
Equations

𝑥0 𝑥1

𝐴𝑥 = 𝑏𝐴𝑇 𝐴𝑇

Write the model matrix:

In [4]: m = len(t)
n = 2

In [5]: A = np.ones((m,n))
A[:,1] = t

Build the arrays needed to solve the normal equations

In [6]: AtA = A.T@A
Atb = A.T@y

Solve the linear system of equations:

In [7]: x = la.solve(AtA,Atb)

In [8]: x

Plot the fit:

Out[8]: array([1.71134979, 4.37036809])
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In [9]: plt.plot(t, y, 'o')
plt.plot(t,  x[1] * t + x[0])
plt.grid()

2) Fit with a quadratic curve

What if the set of points looks like this?

In [10]: n = 50
t = np.linspace(-1, 1, n)
y = t ** 2 + np.random.randn(n) * 0.05 + 5 
 
plt.plot(t, y, 'o')
plt.grid()

We want to use a fit function with the form:
𝑦 = + 𝑡 +𝑥0 𝑥1 𝑥2𝑡2
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In [11]: m = len(t)
n = 3 # we want to find three coefficients to fit with a quadratic funct
ion 
 
A = np.ones((m,n))
A[:,1] = t
A[:,2] = t**2 
 
#Build the arrays needed to solve the normal equations 
 
AtA = A.T@A
Atb = A.T@y 
 
#Solve the linear system of equations: 
 
x = la.solve(AtA,Atb)

In [12]: x

In [13]: plt.plot(t, y, 'o')
plt.plot(t, x[2] * t ** 2 + x[1] * t + x[0])

3) Fit an exponential curve

What if the set of points looks like this?

Out[12]: array([ 5.00017417, -0.00679983,  1.00937144])

Out[13]: [<matplotlib.lines.Line2D at 0x1a18972810>]
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In [14]: n = 50
t = np.linspace(0.1, np.e * 4, n)
y = np.exp(t * 0.5) * 3 + np.random.randn(n) * 2 
 
plt.plot(t, y, 'o')

We want to use a fit function with the form:

Noticed that we can't directly use linear least squares here since the function is not linear with respect to all the
coefficients . What if we take the natural log of both sides?

with the change of variables  and  we can re-write the above equation as:

𝑦 = 𝑥0 𝑒 𝑡𝑥1

𝑥𝑖

ln 𝑦 = ln + 𝑡𝑥0 𝑥1

= ln 𝑦�̄� = ln�̄�0 𝑥0

= + 𝑡�̄� �̄�0 𝑥1

In [15]: m = len(t)
n = 2 # we want to find three coefficients to fit with a quadratic funct
ion 
 
A = np.ones((m,n))
A[:,1] = t 
 
#Build the arrays needed to solve the normal equations 
 
AtA = A.T@A
Atb = A.T@np.log(y) 
 
#Solve the linear system of equations: 
 
x = la.solve(AtA,Atb)

In [16]: x

Out[14]: [<matplotlib.lines.Line2D at 0x1a18f72850>]

Out[16]: array([0.90112513, 0.52635894])
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In [17]: x0 = np.exp(x[0])
plt.plot(t, y, 'o')
plt.plot(t,  x0 * np.exp(x[1]*t))
plt.grid()

4) building stories vs height

In [18]: data = pd.read_csv('./additional_files/bldgstories.txt', delim_whitespac
e=True)

In [19]: year = data.values[:,0]
hght = data.values[:,1]
stories= data.values[:,2]

In [20]: plt.plot(hght, stories, 'o')
plt.xlabel('height')
plt.ylabel('stories')

Out[20]: Text(0, 0.5, 'stories')
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We want to use a fit function with the form:

The model matrix is:

𝑦 = + 𝑡𝑥0 𝑥1

In [21]: m = len(hght)
n = 2  
 
A = np.ones((m,n))
A[:,1] = hght

Solving using normal equations:

In [22]: AtA = A.T@A
Atb = A.T@stories 
 
x = la.solve(AtA,Atb)
print(x)

In [23]: # Get the residual Euclidean norm:
print( la.norm(A@x-stories,2) ) 
 
# Squared of the Euclidean norm of the residual
print( la.norm(A@x-stories,2)**2 )

Using the least-squares built-in function:

In [24]: coeff, residual, rank, singvalues = la.lstsq(A,stories,rcond=None)
print(coeff) 
 
print(residual) 
 
print(rank) 
 
print(singvalues)

In [25]: u,s,vt = la.svd(A)
print(s)

[-3.33129846  0.08001458] 

37.39104302480999 
1398.0900984831917 

[-3.33129846  0.08001458] 
[1398.09009848] 
2 
[4.46706748e+03 2.48020755e+00] 

[4.46706748e+03 2.48020755e+00] 
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Or using another built-in function for linear regression:

In [26]: a, b, rvalue, pvalue, stderr = stats.linregress(hght, stories)
print(a)
print(b)

In [27]: print(rvalue)

In [28]: plt.plot(hght, x[0] + x[1]*hght , 'r-')
plt.plot(hght, stories, 'o')
plt.xlabel('height')
plt.ylabel('stories')

5) eye sight distance vs age

In [29]: data = pd.read_csv('./additional_files/signdist.txt', delim_whitespace=T
rue)

In [30]: age = data.values[:,0]
distance = data.values[:,1]

0.08001457924032182 
-3.3312984582958265 

0.9505548942627724 

Out[28]: Text(0, 0.5, 'stories')
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In [31]: a, b, rvalue, pvalue, stderr = stats.linregress(age, distance)
plt.plot(age, a*age + b, 'r-')
plt.plot(age, distance, 'o')
plt.xlabel('age')
plt.ylabel('distance') 
 
print(abs(rvalue))

6) height vs GPA
What?!

In [32]: data = pd.read_csv('./additional_files/heightgpa.txt', delim_whitespace=
True)

In [33]: height = data.values[:,0]
gpa = data.values[:,1]

0.8012446509407871 
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In [34]: a, b, rvalue, pvalue, stderr = stats.linregress(height, gpa)
plt.plot(height, a*height + b, 'r-')
plt.plot(height, gpa, 'o')
plt.xlabel('height')
plt.ylabel('gpa') 
 
print(abs(rvalue))

B) Modeling ice extent over time

Ice Extent

In addition to fitting functions to datapoints, we can use least squares to make predictions on events that may
happen in the future. Here we have a dataset containing the extent of arctic sea ice over the years, which we
can fit a least squares model to and predict the extent of arctic ice in future years.

This is based on data from:

http://ww2.amstat.org/publications/jse/v21n1/witt.pdf (http://ww2.amstat.org/publications/jse/v21n1/witt.pdf)

http://nsidc.org/research/bios/fetterer.html (http://nsidc.org/research/bios/fetterer.html)

ftp://sidads.colorado.edu/DATASETS/NOAA/G02135/north/monthly/data/N_08_extent_v3.0.csv

In [35]: data = pd.read_csv('./additional_files/N_09_extent_v3.0.csv', dtype={'ye
ar': np.int32, 'extent': np.double})

0.05324125988691996 

http://ww2.amstat.org/publications/jse/v21n1/witt.pdf
http://nsidc.org/research/bios/fetterer.html
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In [36]: data.head()

In [37]: print(data.shape)

In [38]: year = data['year']
extent = data[' extent']

In [39]: plt.figure(figsize=(6,4))
plt.plot(year, extent, 'o')

Fitting with a line

In [40]: npoints = data.shape[0]
print('number of data points = ', npoints)

In [41]: def fitfunction(t,coeffs): 
    fit = 0 
    for i,c in enumerate(coeffs): 
        fit += c*t**i 
    return  fit

Out[36]:
year mo data-type region extent area

0 1979 9 Goddard N 7.05 4.58

1 1980 9 Goddard N 7.67 4.87

2 1981 9 Goddard N 7.14 4.44

3 1982 9 Goddard N 7.30 4.43

4 1983 9 Goddard N 7.39 4.70

(39, 6) 

Out[39]: [<matplotlib.lines.Line2D at 0x1a199025d0>]

number of data points =  39 
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In [42]: ndata = 20 #use the first ndata points for the fit
year1 = year[:ndata]
extent1 = extent[:ndata] 
 
A = np.array([ 
    1+0*year1, 
    year1 
    ]).T 
 
b = np.array(extent1) 
 
x = la.solve(A.T@A,A.T@b)

In [43]: plt.plot(year1, fitfunction(year1,x))
plt.plot(year, extent, 'o')

How did the linear fit "fit" as time time progresses?

Out[43]: [<matplotlib.lines.Line2D at 0x1a1993c310>]
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In [44]: plt.figure(figsize=(10,8))
plt.plot(year, extent, 'o') 
 
for ndata in range(22, npoints): 
     
    year1 = year[:ndata] 
    extent1 = extent[:ndata] 
 
    A = np.array([ 
        1+0*year1, 
        year1 
        ]).T 
 
    b = np.array(extent1) 
 
    x = la.solve(A.T@A,A.T@b) 
     
    plt.plot(year1, fitfunction(year1,x),  label='%d' % (year[0]+ndata)) 
     
plt.legend()

Let's try a quadratic fit

Out[44]: <matplotlib.legend.Legend at 0x1a19031b10>
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In [45]: ndata = 26 #use the first ndata points for the fit
year1 = year[:ndata]
extent1 = extent[:ndata] 
 
A = np.array([ 
    1+0*year1, 
    year1, 
    year1**2 
    ]).T 
 
b = np.array(extent1) 
 
x = la.solve(A.T@A,A.T@b) 
 
print(x)

In [46]: plt.plot(year, fitfunction(year,x))
plt.plot(year, extent, 'o')

What went wrong?
Let's try to use the least square function from scipy

[6.79221628e+00 7.00452986e-07 3.50158197e-10] 

Out[46]: [<matplotlib.lines.Line2D at 0x1a18961c10>]
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In [47]: coeffs,residual,rank,sval=np.linalg.lstsq(A,b,rcond=None) 
 
plt.plot(year, fitfunction(year,coeffs))
plt.plot(year, extent, 'o') 
 
print(coeffs)

Seems to work with lstsq ... what could be the issue with the Normal Equations method above?

Let's check the condition number of the matrix A

In [48]: print(la.cond(A))
print(x)
print(la.norm(A@x-b))

The matrix A becomes closer to singular as the number of columns increases (i.e., as the number of coefficients
for the fit increase). We can scale the years, to mitigate this situation:

[-5.78703451e+03  5.86799957e+00 -1.48565324e-03] 

313354558941.1675 
[6.79221628e+00 7.00452986e-07 3.50158197e-10] 
2.7991699750018357 
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In [49]: year2 = year - 1980
extent2 = extent 
 
A = np.array([ 
    1+0*year2, 
    year2, 
    year2**2 
    ]).T 
 
b = np.array(extent2) 
 
x = la.solve(A.T@A,A.T@b) 
 
 
print(la.cond(A))
print(x)

In [50]: plt.plot(year2, fitfunction(year2,x))
plt.plot(year2, extent, 'o')

C) Linear Least Squares using SVD

The function below creates a random matrix and a random right-hand side vector, to use as input data for least
squares. The arguments of the function are the shape of A, and the rank of A. You should run examples to
investigate the following situations:

1) rankA = N (this is a full rank matrix, and hence solution is unique

2) rankA = N - 1 (this is a rank deficient matrix, and the solution is no longer unique

1593.2774157903386 
[ 7.32702301e+00 -2.55283521e-02 -1.60576890e-03] 

Out[50]: [<matplotlib.lines.Line2D at 0x10471d8d0>]
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In [51]: def creates_A_b(shap = (10,4), rankA=4): 
    M,N = shap 
    # Generating the orthogonal matrix U 
    X = np.random.rand(M,M) 
    U,R = sla.qr(X) 
    # Generating the orthogonal matrix V 
    Y = np.random.rand(N,N) 
    V,R = sla.qr(Y) 
    Vt = V.T 
    # Generating the diagonal matrix Sigma 
    singval = random.sample(range(1, 9), rankA) 
    singval.sort() 
    sigmavec = singval[::-1] 
    sigma = np.zeros((M,N)) 
    for i,sing in enumerate(sigmavec): 
        sigma[i,i] = sing 
    A = U@sigma@Vt 
    b = np.random.rand(M) 
    return(A,b)

In [52]: # Matrix shape
M = 10
N = 4
r = 2
A,b = creates_A_b((M,N),r)

In [53]: print(la.cond(A))

1) Using normal equations (unique solution, full rank)

In [54]: xu = la.solve(A.T@A,A.T@b)
print(xu)

In [55]: la.norm(A@xu-b,2)

In [56]: la.norm(xu,2)

2) Using SVD

4.625115885046109e+16 

[ 0.01396977 -0.9037762  -0.00833452  0.78846146] 

Out[55]: 1.061029830914453

Out[56]: 1.1994780179500095
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In [57]: UR,SR,VRt = la.svd(A,full_matrices=False)
print(SR)

In [58]: # ub = (UR.T@b)
# x = np.zeros(N)
# for i,s in enumerate(SR):
#     if s > 1e-15:
#         x += VRt[i,:]*ub[i]/s
# print(x)

In [59]: Sinv = np.zeros((N,N))
for i,si in enumerate(SR): 
    if si > 1e-12: 
        Sinv[i,i] = 1/si 
 
x = VRt.T@Sinv@UR.T@b
print(x)

In [60]: la.norm(A@x-b,2)

In [61]: la.norm(x,2)

In [62]: ## Side note (if we want to predict the residual based on the full SVD)
U,S,Vt = la.svd(A)
Sfullinv = np.zeros((N,M))
for i,si in enumerate(S): 
    if si > 1e-12: 
        Sfullinv[i,i] = 1/si 
 
x = Vt.T@Sfullinv@U.T@b
print(x) 
 
la.norm((U.T@b)[r:],2)

3) Using numpy.linalg Least Squares method

In [63]: coeffs,residual,rank,sval=np.linalg.lstsq(A,b,rcond=None)
print(coeffs)

[6.00000000e+00 3.00000000e+00 6.77057243e-16 1.29726479e-16] 

[-0.1534047   0.0949751   0.0667189   0.22137863] 

Out[60]: 1.0610298309144532

Out[61]: 0.29328004036984134

[-0.1534047   0.0949751   0.0667189   0.22137863] 

Out[62]: 1.061029830914453

[-0.1534047   0.0949751   0.0667189   0.22137863] 
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In [64]: la.norm(A@coeffs-b,2)

In [65]: la.norm(coeffs,2)

In [66]: rank

D) Least Squares Predictor for Fantasy Football
In Fantasy Football, contestants choose from a pool of available (American) football players to build a team.
Contestants' teams score points depending on how their chosen players performed in real-life. The more points
scored, the better!

There are literally hundreds of websites and blogs dedicated to predicting who will have a good game. They use
a variety of methodologies (including no methodology at all) to generate their predictions. We will try to develop
a predictor using Linear Least Squares that will answer the question: "Should I pick this player?"

Bonus: This activity may help you with the "breast cancer MP", since you will be using similar data structures in
that assignment.

There are two data sets, FF-data-2018.csv  and FF-data-2019.csv  that were collected using scoring
from the Yahoo Fantasy Football platform. The 2018 data was collected from here (http://rotoguru1.com/cgi-
bin/fyday.pl?week=16&year=2018&game=yh&scsv=1). You can choose other years going back to 2011 from a
variety of platforms.

Let's read in the data and see what it looks like.

Out[64]: 1.0610298309144532

Out[65]: 0.2932800403698414

Out[66]: 2

http://rotoguru1.com/cgi-bin/fyday.pl?week=16&year=2018&game=yh&scsv=1
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In [67]: ff_2018 = pd.read_csv('./additional_files/FF-data-2018.csv')
ff_2018

Out[67]:
Week Year GID Name Pos Team h/a Oppt YH points YH salary

0 1 2018 1242 Fitzpatrick; Ryan QB tam a nor 42.28 25.0

1 1 2018 1151 Brees; Drew QB nor h tam 31.56 33.0

2 1 2018 1231 Rivers; Philip QB lac h kan 29.96 31.0

3 1 2018 1523 Mahomes II; Patrick QB kan a lac 28.34 27.0

4 1 2018 1252 Rodgers; Aaron QB gnb h chi 24.94 39.0

... ... ... ... ... ... ... ... ... ... ...

6350 16 2018 7013 Indianapolis Def ind h nyg 2.00 13.0

6351 16 2018 7010 Denver Def den a oak 1.00 16.0

6352 16 2018 7029 Tampa Bay Def tam a dal 1.00 10.0

6353 16 2018 7015 Kansas City Def kan a sea -1.00 13.0

6354 16 2018 7012 Green Bay Def gnb a nyj -2.00 15.0

6355 rows × 10 columns
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There are 6,355 data points which have a number of fields. They are:

Week: The NFL season features 17 weeks of games, and each team plays 16 games in this time period.
This column tells you which week the player's game was. I didn't include week 17, because many of the
best players take that week off.

Year: Which year the game was played. For this data set, all the year values are equal to 2018.

GID: A unique ID tag for each player. We'll ignore this column.

Name: The actual name of the player. In the case of defenses, the defense of the entire team is included, so
in that case, this is the name of a city.

Pos: This is the position of the player. The available choices are quarterback (QB), running back (RB), wide
receiver (WR), tight end (TE), and defense (Def).

Team: An abbreviation that indicates which team the player belongs to. Ryan Fitzpatrick was a member of
the Tampa Bay Buccaneers, so his Team value is "tam".

h/a: Whether the player's game was played at home or on the road. The possible values are 'h' (home) and
'a' (away).

Oppt: The opposing team that the player faced. Ryan Fitzpatrick played against the New Orleans Saints in
week 1, so his Oppt value is "nor".

YH points: The amount of points the player scored that week. Ryan Fitzpatrick scored a whopping 42.28
points in week 1.

YH salary: On many Fantasy Football sites, you start with a certain budget, and select a team of players
within the constraints of that budget. Ryan Fitzpatrick only took 25.0 "dollars" of your available budget if
you selected him on your team. It gives an indication of how the platform judges the quality of a player.

We can access the labels and put them in a list:

In [68]: labels = list(ff_2018.columns)
print(labels)

We can print out the available values of the positions for the data set by passing the key Pos  as a string to the
data set.

In [69]: print(ff_2018['Pos'].values)

['Week', 'Year', 'GID', 'Name', 'Pos', 'Team', 'h/a', 'Oppt', 'YH point
s', 'YH salary'] 

['QB' 'QB' 'QB' ... 'Def' 'Def' 'Def'] 
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To remove all the duplicates, we can call the function numpy.unique  to access all distinct values. (Just like
every other time you use a new function, review the documentation of numpy.unique ! You can do so by
running a cell with the following command: np.unique? )

In [70]: positions = np.unique(ff_2018['Pos'])
print(positions)

Since the positions in football are so different, we really want to focus on one at a time. It would be very
ambitious to try and create a general predictor for all positions. Let's focus on quarterbacks first.

How can we extract all the data for quarterbacks? We can find the rows in the dataframe that has position equal
to QB

In [71]: POS = 'QB'
ff_2018['Pos'] == POS

We will create another (smaller) dataframe that has the rows referring to the quarterback position.

In [72]: df_POS = ff_2018[ff_2018['Pos'] == POS].copy()
df_POS.head()

['Def' 'QB' 'RB' 'TE' 'WR'] 

Out[71]: 0        True 
1        True 
2        True 
3        True 
4        True 
        ...   
6350    False 
6351    False 
6352    False 
6353    False 
6354    False 
Name: Pos, Length: 6355, dtype: bool

Out[72]:
Week Year GID Name Pos Team h/a Oppt YH points YH salary

0 1 2018 1242 Fitzpatrick; Ryan QB tam a nor 42.28 25.0

1 1 2018 1151 Brees; Drew QB nor h tam 31.56 33.0

2 1 2018 1231 Rivers; Philip QB lac h kan 29.96 31.0

3 1 2018 1523 Mahomes II; Patrick QB kan a lac 28.34 27.0

4 1 2018 1252 Rodgers; Aaron QB gnb h chi 24.94 39.0
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We can access the names of all the quarterbacks by referring to the columns Name

In [73]: df_POS['Name']

Linear Least Squares works with numerical data, not strings. Eventually, we will want our predictive models to
incorporate whether the player played at home or on the road, or how good their opponent was. But the
columns h/a  and Oppt  are strings:

In [74]: df_POS['h/a']

In [75]: df_POS['Oppt']

Out[73]: 0         Fitzpatrick; Ryan 
1               Brees; Drew 
2            Rivers; Philip 
3       Mahomes II; Patrick 
4            Rodgers; Aaron 
               ...          
5968            Allen; Kyle 
5969          Sudfeld; Nate 
5970          Mannion; Sean 
5971           Hoyer; Brian 
5972           Hill; Taysom 
Name: Name, Length: 586, dtype: object

Out[74]: 0       a 
1       h 
2       h 
3       a 
4       h 
       .. 
5968    h 
5969    h 
5970    a 
5971    h 
5972    h 
Name: h/a, Length: 586, dtype: object

Out[75]: 0       nor 
1       tam 
2       kan 
3       lac 
4       chi 
       ...  
5968    atl 
5969    hou 
5970    ari 
5971    buf 
5972    pit 
Name: Oppt, Length: 586, dtype: object
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At this point, we need to make decisions about what numerical values these should take. For the home/away
column:

let's make an array with the value +1.0 when the game is played at home, and -1.0 when the game is
played away.
store this array as another column in the pandas dataframe, with label home_away

In [76]: df_POS['home_away'] = np.where(df_POS['h/a']=='a',-1,1)
df_POS

For the opponents, we need some kind of information about how many points they give up to a position on
average. We have compiled that information in a separate file, called team_rankings.py . Importing this file
will give us access to a collection of dictionaries that provides this information.

After importing this file, the number vs_2018[Pos][team]  will give us a relevant ranking.

In [77]: from team_rankings import *  # asterik just means we import everything f
rom that namespace

We can take a look at the keys in the dictionary:

In [78]: print( vs_2018.keys() )

Out[76]:

Week Year GID Name Pos Team h/a Oppt YH
points

YH
salary home_away

0 1 2018 1242 Fitzpatrick;
Ryan QB tam a nor 42.28 25.0 -1

1 1 2018 1151 Brees; Drew QB nor h tam 31.56 33.0 1

2 1 2018 1231 Rivers; Philip QB lac h kan 29.96 31.0 1

3 1 2018 1523 Mahomes II;
Patrick QB kan a lac 28.34 27.0 -1

4 1 2018 1252 Rodgers; Aaron QB gnb h chi 24.94 39.0 1

... ... ... ... ... ... ... ... ... ... ... ...

5968 16 2018 1536 Allen; Kyle QB car h atl 1.52 0.0 1

5969 16 2018 1507 Sudfeld; Nate QB phi h hou 0.00 20.0 1

5970 16 2018 1484 Mannion; Sean QB lar a ari -0.20 20.0 -1

5971 16 2018 1336 Hoyer; Brian QB nwe h buf -0.20 20.0 1

5972 16 2018 1530 Hill; Taysom QB nor h pit -1.00 20.0 1

586 rows × 11 columns

dict_keys(['QB', 'WR', 'RB', 'TE', 'Def']) 
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Note that the keys are just the player positions. Let's see the information for the key QB  (we have been storing
this string in the variable POS )

In [79]: vs_2018[POS]

In [80]: print(vs_2018[POS]['atl'])
print(vs_2018[POS]['buf'])

Out[79]: {'ari': 28, 
 'atl': 1.0, 
 'bal': 29.0, 
 'buf': 32.0, 
 'car': 9.0, 
 'chi': 31.0, 
 'cin': 3.0, 
 'cle': 13.0, 
 'dal': 24.0, 
 'den': 27.0, 
 'det': 15.0, 
 'gnb': 12.0, 
 'hou': 19.0, 
 'ind': 21.0, 
 'jac': 23.0, 
 'kan': 5.0, 
 'lac': 25.0, 
 'lar': 20.0, 
 'mia': 10.0, 
 'min': 30.0, 
 'nor': 2.0, 
 'nwe': 18, 
 'nyg': 16.0, 
 'nyj': 6.0, 
 'oak': 8, 
 'phi': 11.0, 
 'pit': 17.0, 
 'sea': 22.0, 
 'sfo': 7.0, 
 'tam': 4.0, 
 'ten': 26.0, 
 'was': 14}

1.0 
32.0 
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There are 32 football teams in the NFL.

The fact that vs_2018['QB']['atl']  has the value 1.0, means that the Atlanta Falcons gave up the most
points to quarterbacks on average in the 2018 season.

Since vs_2018['QB']['buf']  has the value 32.0, this means that the Buffalo Bills gave up the least points
to quarterbacks on average in the 2018 season.

So, we would expect a better performance out of a quarterback if he is playing the Atlanta Falcons, compared
to the Buffalo Bills.

The rankings can be very different for different positions:

In [81]: print(vs_2018['RB']['atl'])
print(vs_2018['RB']['buf'])
print()
print(vs_2018['WR']['atl'])
print(vs_2018['WR']['buf'])
print()
print(vs_2018['TE']['atl'])
print(vs_2018['TE']['buf'])
print()
print(vs_2018['Def']['atl'])
print(vs_2018['Def']['buf'])
print()

For the quarterback position (POS = 'QB'), convert the strings in the column Oppt  into their corresponding
numerical values using the dictionary vs_2018 . Store this as another column of the pandas dataframe 
oppt_rank

4.0 
7.0 
 
6.0 
29.0 
 
20.0 
32.0 
 
21.0 
2.0 
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In [82]: def get_rank(x): 
    return vs_2018[POS][x] 
 
df_POS['oppt_rank'] = df_POS['Oppt'].apply(get_rank)
df_POS

Now, players' names will be repeated in the array names  for every game they played. We will find it convenient
to have another array collecting the names without these repeats. We'll use pandas.Series.unique  to do
this.

In [83]: unique_players = df_POS['Name'].unique()
len(unique_players)

So 73 quarterbacks played in 2018. But there are only 32 teams! Who are all these people?

In [84]: print(unique_players[7])
print(unique_players[72])

Out[82]:

Week Year GID Name Pos Team h/a Oppt YH
points

YH
salary home_away oppt_ra

0 1 2018 1242 Fitzpatrick;
Ryan QB tam a nor 42.28 25.0 -1 2

1 1 2018 1151 Brees;
Drew QB nor h tam 31.56 33.0 1 4

2 1 2018 1231 Rivers;
Philip QB lac h kan 29.96 31.0 1 5

3 1 2018 1523 Mahomes
II; Patrick QB kan a lac 28.34 27.0 -1 25

4 1 2018 1252 Rodgers;
Aaron QB gnb h chi 24.94 39.0 1 31

... ... ... ... ... ... ... ... ... ... ... ...

5968 16 2018 1536 Allen; Kyle QB car h atl 1.52 0.0 1 1

5969 16 2018 1507 Sudfeld;
Nate QB phi h hou 0.00 20.0 1 19

5970 16 2018 1484 Mannion;
Sean QB lar a ari -0.20 20.0 -1 28

5971 16 2018 1336 Hoyer;
Brian QB nwe h buf -0.20 20.0 1 32

5972 16 2018 1530 Hill;
Taysom QB nor h pit -1.00 20.0 1 17

586 rows × 12 columns

Out[83]: 73

Brady; Tom 
Sudfeld; Nate 
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I know who Tom Brady is, but I've never heard of Nate Sudfeld. Let's count how many times a players played a
game.

We can use groupby  to group players by Name, and then count the number of times each player appears:

In [85]: df_POS.groupby('Name')['Name'].count()

We want to add the frequency (game count) back to the original dataframe, and for that we will use transform to
return an aligned index.

Out[85]: Name 
Allen; Brandon      1 
Allen; Josh        11 
Allen; Kyle         1 
Anderson; Derek     2 
Barkley; Matt       1 
                   .. 
Webb; Joe           2 
Weeden; Brandon     1 
Wentz; Carson      11 
Wilson; Russell    15 
Winston; Jameis    10 
Name: Name, Length: 73, dtype: int64
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In [86]: df_POS['game_count'] = df_POS.groupby('Name')['Name'].transform('count')
df_POS

Note that Nate Sudfeld only played in 1 game in 2018. He probably took over when the starter was injured, or
when his team was involved in a lopsided game. We probably want to remove his data, since it won't be very
helpful.

Let's us create an array of the names of all the players that are relevant to our analysis. For that, we will exclude
the names for all the players that participated in less than min_games .

Out[86]:

Week Year GID Name Pos Team h/a Oppt YH
points

YH
salary home_away oppt_ra

0 1 2018 1242 Fitzpatrick;
Ryan QB tam a nor 42.28 25.0 -1 2

1 1 2018 1151 Brees;
Drew QB nor h tam 31.56 33.0 1 4

2 1 2018 1231 Rivers;
Philip QB lac h kan 29.96 31.0 1 5

3 1 2018 1523 Mahomes
II; Patrick QB kan a lac 28.34 27.0 -1 25

4 1 2018 1252 Rodgers;
Aaron QB gnb h chi 24.94 39.0 1 31

... ... ... ... ... ... ... ... ... ... ... ...

5968 16 2018 1536 Allen; Kyle QB car h atl 1.52 0.0 1 1

5969 16 2018 1507 Sudfeld;
Nate QB phi h hou 0.00 20.0 1 19

5970 16 2018 1484 Mannion;
Sean QB lar a ari -0.20 20.0 -1 28

5971 16 2018 1336 Hoyer;
Brian QB nwe h buf -0.20 20.0 1 32

5972 16 2018 1530 Hill;
Taysom QB nor h pit -1.00 20.0 1 17

586 rows × 13 columns
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In [87]: min_games = 5
relevant_players =  df_POS[df_POS['game_count']>=min_games]['Name'].uniq
ue()
print(len(relevant_players))
relevant_players

Now we only consider 43 quarterbacks playing in 2018.

Let's put all of this together!
Write a function prepare_data  that creates the dataframe df_POS  for a given player position. The function
also returns as an argument the list of relevant unique players.

In [88]: def prepare_data(ff_data,POS,min_games):   
    # returns (new_df,relevant_players) as described above 
    #clear 
    df_POS = ff_data[ff_data['Pos'] == POS].copy() 
    df_POS['home_away'] = np.where(df_POS['h/a']=='a',-1,1) 
    df_POS['oppt_rank'] = df_POS['Oppt'].apply(get_rank) 
    df_POS['game_count'] = df_POS.groupby('Name')['Name'].transform('cou
nt') 
    df_new = df_POS[df_POS['game_count']>=min_games].copy() 
    relevant_players =  df_POS[df_POS['game_count']>=min_games]['Name'].
unique() 
    return(df_POS, relevant_players)

Test out that your function works as expected:

43 

Out[87]: array(['Fitzpatrick; Ryan', 'Brees; Drew', 'Rivers; Philip', 
       'Mahomes II; Patrick', 'Rodgers; Aaron', 'Wilson; Russell', 
       'Brady; Tom', 'Keenum; Case', 'Flacco; Joe', 'Luck; Andrew', 
       'Cousins; Kirk', 'Smith; Alex', 'Newton; Cam', 'Dalton; Andy', 
       'Goff; Jared', 'Tannehill; Ryan', 'Darnold; Sam', 'Bortles; Blak
e', 
       'Trubisky; Mitchell', 'Watson; Deshaun', 'Stafford; Matthew', 
       'Roethlisberger; Ben', 'Ryan; Matt', 'Carr; Derek', 
       'Prescott; Dak', 'Manning; Eli', 'Allen; Josh', 'Jackson; Lama
r', 
       'Gabbert; Blaine', 'Mariota; Marcus', 'Hill; Taysom', 
       'Wentz; Carson', 'Mayfield; Baker', 'Rosen; Josh', 
       'Beathard; C.J.', 'Winston; Jameis', 'Osweiler; Brock', 
       'Daniel; Chase', 'Dobbs; Joshua', 'Kessler; Cody', 'Driskel; Jef
f', 
       'Heinicke; Taylor', 'Mullens; Nick'], dtype=object)
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In [89]: df_test,players_test = prepare_data(ff_2018,'WR',3)
df_test

Simple Model - Last  games
We'll start with a simple linear model. For now, we will keep using our example where we constructed a dataset
for quarterbacks in the variable df_POS , along with relevant_players

The points scored in the previous  games will be the only data considered when making a prediction. Let's
look at what the model would look like for only one player, say Andy Dalton, with .

𝑛

𝑛

𝑛 = 3

In [90]: pl = relevant_players[13]
pl_points = df_POS[df_POS['Name']==pl]['YH points'].values 
 
print('Player:', pl)
print('Points:', pl_points)

Out[89]:

Week Year GID Name Pos Team h/a Oppt YH
points

YH
salary home_away oppt_rank

144 1 2018 5485 Hill;
Tyreek WR kan a lac 38.8 28.0 -1 25.0

145 1 2018 5459 Thomas;
Michael WR nor h tam 30.0 37.0 1 4.0

146 1 2018 3770 Jackson;
DeSean WR tam a nor 29.1 14.0 -1 2.0

147 1 2018 5125 Cobb;
Randall WR gnb h chi 24.7 15.0 1 31.0

148 1 2018 5212 Stills;
Kenny WR mia h ten 24.6 17.0 1 26.0

... ... ... ... ... ... ... ... ... ... ... ... ..

6231 16 2018 5570 Cole;
Keelan WR jac a mia 0.0 10.0 -1 10.0

6232 16 2018 5387 Hardy;
Justin WR atl a car 0.0 10.0 -1 9.0

6233 16 2018 5692 Beebe;
Chad WR min a det 0.0 10.0 -1 15.0

6234 16 2018 5595 Hall;
Marvin WR atl a car 0.0 10.0 -1 9.0

6235 16 2018 5684 Moore;
J'Mon WR gnb a nyj -2.0 10.0 -1 6.0

2278 rows × 13 columns

Player: Dalton; Andy 
Points: [17.52 26.6  18.08 25.78 13.92 17.16  8.92 20.2   8.92 19.34  
9.1 ] 
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Andy Dalton played 11 games. So we could try to build a model that predicted the points he scored in his 4th
game, based on his first 3, and similarly try to predict the points he scored in the 5th games based on games
2,3, and 4.

I.e. a "local" least squares system might look something like

where

𝐀𝐱 ≅ 𝐛

𝐀 = , 𝐛 =

⎛

⎝

⎜
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This was with  games. If instead, we base our "local" least squares on the previous  games, then
our system would instead look like:

𝑛 = 3 𝑛 = 4

𝐀 = , 𝐛 =

⎛
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Write a function that generates this local system for a given (relevant) player. Use the example above to debug
your function (i.e., data for Andy Dalton)
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In [91]: def player_point_history(df, pl, n_games):    
    # df: dataframe 
    # rel_player (string): name of a player 
    # n_games (int): number of games used for the prediction 
    # clear 
    pts = df[df['Name']==pl]['YH points'].values 
     
    m = pts[n_games:].shape[0] 
    A = np.zeros((m,n_games)) 
    for k in range(n_games): 
        A[:,k] = pts[k:-n_games + k] 
    b = pts[n_games:] 
       
    return A,b 
 
A,b = player_point_history(df_POS, relevant_players[13], 4)  
print(A)
print(b)

Now, with this function, we can loop over the relevant players, generate their local systems, and "stack" them
on top of each other to generate the global system. We'll do this with 𝑛 = 3

[[17.52 26.6  18.08 25.78] 
 [26.6  18.08 25.78 13.92] 
 [18.08 25.78 13.92 17.16] 
 [25.78 13.92 17.16  8.92] 
 [13.92 17.16  8.92 20.2 ] 
 [17.16  8.92 20.2   8.92] 
 [ 8.92 20.2   8.92 19.34]] 
[13.92 17.16  8.92 20.2   8.92 19.34  9.1 ] 
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In [92]: n_games = 3 
 
# empty array for right hand side of size M x 1
pts_scored = np.array([]) 
 
# empty array for matrix of size M x n_games.  We had to reshape to size 
0 x n_games to allow for "stacking" 
game_hist = np.array([]).reshape(0,n_games) 
 
for pl in relevant_players: 
    # generate local system 
    a,c = player_point_history(df_POS,pl,n_games) 
     
    # use numpy.append to append local system to global vector 
    pts_scored = np.append(pts_scored,c) 
     
    # use numpy.vstack (i.e. "vertical stack") to stack the global matri
x and the local matrix 
    game_hist = np.vstack((game_hist,a)) 
     
print(pts_scored.shape)
print(game_hist.shape)

When should we start a player?
It would be an overly ambitious task to try to predict a players exact point total. What we can do instead is set a
"threshold". I.e. if a player's points exceed this threshold, then we can deem them "startable". If they don't
exceed this threshold, then we should look choose a different player.

What threshold should we use? That's debatable, but I've compiled the following dictionary based on additional
data I collected from nfl.com.

In [93]: start_threshold = {'QB': 19.3999, 'RB': 14.599, 'WR': 15.099, 'TE': 7.89
9, 'Def': 7.499}

So, if a quarterback scores more than 19.3999, we declare them startable. If a defense scores less than 7.499,
then we should pick a different defense, etc.

We can finally set up our least squares system. Set the matrix A  to the variable game_hist  defined above.
The components of the vector b  should have a value of +1.0 if the corresponding component of 
pts_scored  exceeds the threshold, and -1.0 if it lies below the threshold. (I chose the thresholds so that it is

impossible for the points to equal the threshold).

Set up the right hand side vector, and solve the Linear Least Squares problem for . You can use 
numpy.linalg.lstsq  to compute the least-squares solution. Then compute a numpy array b_predict

that tests how this linear model performs on the data.

𝐱

(383,) 
(383, 3) 
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In [94]: threshold = start_threshold[POS]
A = game_hist 
 
# clear
b = np.sign(pts_scored - threshold)
LSTQ = la.lstsq(A,b,rcond=None)
x = LSTQ[0]
b_predict = np.sign(A@x)

We can have the following situations:

The prediction tells you to start a player that ends up performing poorly (a "false positive")
The prediction tells you to exclude a player that ends up performing well (a "false negative")
The prediction tells you to start a player that ends up performing well (a correct prediction)

Compute the number of false positives, false negatives, and correct prediction. What percentage of each do we
obtain on the data?

In [95]: # clear
false_positive = np.sum(b_predict > b)
false_negative = np.sum(b > b_predict)
correct_prediction = np.sum(b == b_predict) 
 
print(false_positive)
print(false_negative)
print(correct_prediction)
print()
print(false_positive/b.shape[0])
print(false_negative/b.shape[0])
print(correct_prediction/b.shape[0])

The model is only correct 60.57% of the time. However, it only return a "false positive" 3.39% of the time, which
is very nice: if the model tells you to start a player, there's a good chance you will be happy with the results.

Let's put it all together into a single function. This will mostly be copying and pasting from above. The function
should return the variables A , b , x .

13 
138 
232 
 
0.033942558746736295 
0.360313315926893 
0.6057441253263708 
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In [96]: def linear_predictor(ff_data, Pos, min_games, n_games, threshold): 
    # clear 
     
    df,relevant_players = prepare_data(ff_data,Pos,min_games) 
     
    pts_scored = np.array([]) 
    game_hist = np.array([]).reshape(0,n_games) 
 
    for pl in relevant_players: 
        a,c = player_point_history(df,pl,n_games) 
        pts_scored = np.append(pts_scored,c) 
        game_hist = np.vstack((game_hist,a)) 
     
    A = game_hist 
    b = np.sign(pts_scored - threshold) 
     
    LSTQ = np.linalg.lstsq(A,b,rcond = None) 
    x = LSTQ[0] 
    # 
     
    return A, b, x

We can call the routine for any position, and we can tweak the number of min_games  and n_games . You
can also tweak the threshold. Try changing the input variables and see how this affects model accuracy

In [97]: Pos = 'WR'
min_games = 5
n_games = 3
threshold = start_threshold[Pos] 
 
A, b, x = linear_predictor(ff_2018, Pos, min_games, n_games, threshold) 
 
# clear
b_predict = np.sign(A@x) 
 
false_negative = np.sum(b > b_predict)
false_positive = np.sum(b_predict > b)
correct_prediction = np.sum(b == b_predict) 
 
print(false_negative)
print(false_positive)
print(correct_prediction)
print()
print(false_negative/b.shape[0])
print(false_positive/b.shape[0])
print(correct_prediction/b.shape[0])

201 
144 
1287 
 
0.12316176470588236 
0.08823529411764706 
0.7886029411764706 
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Notice we didn't make use of the fact that a player is playing on home or on the road, or the ranking of the
opponent. Let's try to enrich the features used in this problem to include this data. Let's go back to Andy
Dalton:

In [98]: pl = relevant_players[13]
pl_points = df_POS[df_POS['Name']==pl]['YH points'].values
pl_home_away = df_POS[df_POS['Name']==pl]['home_away'].values
pl_oppt_rank = df_POS[df_POS['Name']==pl]['oppt_rank'].values 
 
print('Player:', pl)
print('Points:', pl_points)
print('Location:', pl_home_away)
print('Opp Rank:', pl_oppt_rank)

When  we had the following system when we only took previous games played:

With the location and opponent data, it should now look like this:
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Create an enriched linear regression, by adding these two extra columns to the matrix . The routine should
return A  with the two added columns. It should also return the right hand side b  and least-squares solution 
x .

𝐀

Player: Dalton; Andy 
Points: [17.52 26.6  18.08 25.78 13.92 17.16  8.92 20.2   8.92 19.34  
9.1 ] 
Location: [-1  1 -1 -1  1  1 -1  1  1 -1  1] 
Opp Rank: [21. 29.  9.  1. 10. 17.  5.  4.  2. 29. 13.] 
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In [99]: def linear_predictor_enriched(ff_data, Pos, min_games, n_games, threshol
d): 
    # clear 
     
    df,relevant_players = prepare_data(ff_data,Pos,min_games) 
     
    pts_scored = np.array([]) 
    game_hist = np.array([]).reshape(0,n_games+2) 
 
    for pl in relevant_players: 
        a,c = player_point_history(df,pl,n_games) 
        location = df[df['Name']==pl]['home_away'].values 
        opponent = df[df['Name']==pl]['oppt_rank'].values 
        last_two_columns = np.vstack((location[n_games:],opponent[n_game
s:])).T 
        anew = np.hstack((a,last_two_columns )) 
         
        pts_scored = np.append(pts_scored,c) 
        game_hist = np.vstack((game_hist,anew)) 
         
     
    b = np.sign(pts_scored - threshold) 
    A = game_hist 
     
    LSTQ = np.linalg.lstsq(A,b,rcond = None) 
    x = LSTQ[0] 
    # 
     
    return A, b, x

This enriched version is considerably better for running backs, with our standard inputs:
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In [100]: Pos = 'RB'
min_games = 5
n_games = 3
threshold = start_threshold[Pos] 
 
A, b, x  = linear_predictor(ff_2018, Pos, min_games, n_games, threshold) 
 
b_predict = np.sign(A@x)
false_negative = np.sum(b > b_predict)
false_positive = np.sum(b_predict > b)
correct_prediction = np.sum(b == b_predict) 
 
print('Standard Model')
print('Fraction of false negatives:    ', false_negative/b.shape[0])
print('Fraction of false positives:    ', false_positive/b.shape[0])
print('Fraction of correct predictions:', correct_prediction/b.shape[0])
print() 
 
A, b, x = linear_predictor_enriched(ff_2018, Pos, min_games, n_games, th
reshold) 
 
b_predict = np.sign(A@x) 
 
false_negative = np.sum(b > b_predict)
false_positive = np.sum(b_predict > b)
correct_prediction = np.sum(b == b_predict)

But it's not very effective for quarterbacks:

Standard Model 
Fraction of false negatives:     0.161400512382579 
Fraction of false positives:     0.161400512382579 
Fraction of correct predictions: 0.677198975234842 
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In [101]: Pos = 'WR'
min_games = 10
n_games = 1
threshold = start_threshold[Pos] 
 
A, b, x  = linear_predictor(ff_2018, Pos, min_games, n_games, threshold) 
 
b_predict = np.sign(A@x)
false_negative = np.sum(b > b_predict)
false_positive = np.sum(b_predict > b)
correct_prediction = np.sum(b == b_predict) 
 
print('Standard Model')
print('Fraction of false negatives:    ', false_negative/b.shape[0])
print('Fraction of false positives:    ', false_positive/b.shape[0])
print('Fraction of correct predictions:', correct_prediction/b.shape[0])
print() 
 
A, b, x = linear_predictor_enriched(ff_2018, Pos, min_games, n_games, th
reshold) 
 
b_predict = np.sign(A@x) 
 
false_negative = np.sum(b > b_predict)
false_positive = np.sum(b_predict > b)
correct_prediction = np.sum(b == b_predict) 
 
print('Enriched Model')
print('Fraction of false negatives:    ', false_negative/b.shape[0])
print('Fraction of false positives:    ', false_positive/b.shape[0])
print('Fraction of correct predictions:', correct_prediction/b.shape[0])
print()

The number of false positives has shot up dramatically. Despite the (slightly) better accuracy, I would probably
avoid this one.

It seems that running backs are more "matchup-dependent" than quarterbacks. That is, where they are playing
and how good the other team is are bigger factors in their performance compared to quarterbacks.

Standard Model 
Fraction of false negatives:     0.13917216556688664 
Fraction of false positives:     0.20695860827834434 
Fraction of correct predictions: 0.6538692261547691 
 
Enriched Model 
Fraction of false negatives:     0.131373725254949 
Fraction of false positives:     0.008998200359928014 
Fraction of correct predictions: 0.859628074385123 
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Validation set
Of course, you never want to conclude anything about your model based on the data you used to construct it.
You should validate its accuracy on a different data set. We can do so on this years fantasy football data. We
can also select the optimal hyperparameters (a fancy word for parameters) based on this validation set.

Some questions to ask as you test the model on the validation set:

Should we include the home/away and opponent data or not?
Is our decision to exclude players that have played less than 5 games a good one? Should we bump that
number up to 7 games? Or down to 3?
How many games should we include in our history? Is 3 games really the best choice? What about 5? What
about just the last game?

I.e. the inclusion of the extra data, the minimum number of games, and the history length are the
hyperparameters for this model.
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In [102]: ff_2019 = pd.read_csv('./additional_files/FF-data-2019.csv') 
 
# position
Pos = 'WR' 
 
# these are your hyperparameters
min_games = 5
n_games = 2
enriched = True 
 
# build model on 2018 data and retrieve least squares solution x
if enriched: 
    OUT_2018 = linear_predictor_enriched(ff_2018, Pos, min_games,n_games
,threshold) 
    x = OUT_2018[2]
else: 
    OUT_2018 = linear_predictor(ff_2018, Pos, min_games,n_games,threshol
d) 
    x = OUT_2018[2] 
     
 
# retrieve Data matrix A and outcomes vector b using 2019 data
if enriched: 
    OUT_2019 = linear_predictor_enriched(ff_2019, Pos, min_games,n_games
,threshold) 
    A,b = OUT_2019[0], OUT_2019[1]
else: 
    OUT_2019 = linear_predictor(ff_2019, Pos, min_games,n_games,threshol
d) 
    A,b = OUT_2019[0], OUT_2019[1] 
     
# assess model
b_predict = np.sign(A@x) 
 
false_negative = np.sum(b > b_predict)
false_positive = np.sum(b_predict > b)
correct_prediction = np.sum(b == b_predict)
print('Fraction of false negatives:    ', false_negative/b.shape[0])
print('Fraction of false positives:    ', false_positive/b.shape[0])
print('Fraction of correct predictions:', correct_prediction/b.shape[0])
print()

In [ ]:   

In [ ]:   

In [ ]:   

Fraction of false negatives:     0.10348258706467661 
Fraction of false positives:     0.004975124378109453 
Fraction of correct predictions: 0.891542288557214 
 


