Least Squares and Data Fitting

Data fitting

How do we best fit a set of data points?

Consumption

Super Tracker

Linear Least Squares 1) Fitting with a line

Given m data points $\left\{\left\{t_{1}, y_{1}\right\}, \ldots,\left\{t_{m}, y_{m}\right\}\right\}$, we want to find the function

$$
y=x_{o}+x_{1} t
$$

that best fit the data (or better, we want to find the coefficients x_{0}, x_{1}).

Thinking geometrically, we can think "what is the line that most nearly passes through all the points?"

Given m data points $\left\{\left\{t_{1}, y_{1}\right\}, \ldots,\left\{t_{m}, y_{m}\right\}\right\}$, we want to find x_{o} and x_{1} such that

$$
y_{i}=x_{o}+x_{1} t_{i} \quad \forall i \in[1, m]
$$

Given m data points $\left\{\left\{t_{1}, y_{1}\right\}, \ldots,\left\{t_{m}, y_{m}\right\}\right\}$, we want to find x_{0} and x_{1} such that

$$
y_{i}=x_{o}+x_{1} t_{i} \quad \forall i \in[1, m]
$$

or in matrix form:

Note that this system of linear equations has more equations than unknowns OVERDETERMINED Systems

We want to find the appropriate linear combination of the columns of \boldsymbol{A} that makes up the vector \boldsymbol{b}.

If a solution exists that satisfies $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ then $\boldsymbol{b} \in \operatorname{range}(\boldsymbol{A})$

Linear Least Squares

- In most cases, $\boldsymbol{b} \notin \operatorname{range}(\boldsymbol{A})$ and $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ does not have an exact solution!

- Therefore, an overdetermined system is better expressed as
$\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$

Linear Least Squares

- Least Squares: find the solution \boldsymbol{X} that minimizes the residual

$$
r=b-A x
$$

- Let's define the function ϕ as the square of the 2 -norm of the residual

$$
\phi(\boldsymbol{x})=\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}
$$

Linear Least Squares

- Least Squares: find the solution \boldsymbol{X} that minimizes the residual

$$
r=b-A x
$$

- Let's define the function ϕ as the square of the 2 -norm of the residual

$$
\phi(\boldsymbol{x})=\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}
$$

- Then the least squares problem becomes

$$
\min _{\boldsymbol{x}} \phi(\boldsymbol{x})
$$

- Suppose $\phi: \mathcal{R}^{m} \rightarrow \mathcal{R}$ is a smooth function, then $\phi(\boldsymbol{x})$ reaches a (local) maximum or minimum at a point $\boldsymbol{x}^{*} \in \mathcal{R}^{m}$ only if

$$
\nabla \phi\left(x^{*}\right)=0
$$

How to find the minimizer?

- To minimize the 2 -norm of the residual vector

$$
\min _{\boldsymbol{x}} \phi(\boldsymbol{x})=\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}=(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x})^{T}(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x})
$$

Linear Least Squares (another approach)

- Find $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ which is closest to the vector \boldsymbol{b}
- What is the vector $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} \in \operatorname{range}(\boldsymbol{A})$ that is closest to vector \boldsymbol{y} in the Euclidean norm?

Summary:

- \boldsymbol{A} is a $m \times n$ matrix, where $m>n$.
- m is the number of data pair points. n is the number of parameters of the "best fit" function.
- Linear Least Squares problem $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$ always has solution.
- The Linear Least Squares solution \boldsymbol{X} minimizes the square of the 2 -norm of the residual:

$$
\min _{\boldsymbol{x}}\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}
$$

- One method to solve the minimization problem is to solve the system of Normal Equations

$$
\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

- Let's see some examples and discuss the limitations of this method.

Example:

t

array ([-1.61477467, -2.3970584, -0.30372944, 2.26304537, 2.188127])
b

```
array([ 0.74112251, -0.57768693, 3.33523097, 6.29377547, 4.44786481])
```

Solve: $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}$

x

array([2.81441707, 1.24048133])

Data fitting - not always a line fit!

- Does not need to be a line! For example, here we are fitting the data using a quadratic curve.

Linear Least Squares: The problem is linear in its coefficients!

Another example

We want to find the coefficients of the quadratic function that best fits the data points:

$$
y=x_{0}+x_{1} t+x_{2} t^{2}
$$

We would not want our "fit" curve to pass through the data points exactly as we are looking to model the general trend and not capture the noise.

Data fitting

$$
y=x_{0}+x_{1} t+x_{2} t^{2}
$$

Data fitting

$\left[\begin{array}{ccc}1 & t_{1} & t_{1}^{2} \\ \vdots & \vdots & \vdots \\ 1 & t_{m} & t_{m}^{2}\end{array}\right]\left[\begin{array}{l}x_{0} \\ x_{1} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{m}\end{array}\right] \quad$ Solve: $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}$

Which function is not suitable for linear least squares?
A) $y=a+b x+c x^{2}+d x^{3}$
B) $y=x\left(a+b x+c x^{2}+d x^{3}\right)$
C) $y=a \sin (x)+b / \cos (x)$
D) $y=a \sin (x)+x / \cos (b x)$
E) $y=a e^{-2 x}+b e^{2 x}$

Computational Cost

$$
\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

Short questions

Given the data in the table below, which of the plots shows the line of best fit in terms of least squares?

x	1	2	5
y	2	18	12

Short questions

Given the data in the table below, and the least squares model

$$
y=c_{1}+c_{2} \sin (t \pi)+c_{3} \sin (t \pi / 2)+c_{4} \sin (t \pi / 4)
$$

written in matrix form as

$$
A\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \cong \mathbf{y}
$$

t_{i}	y_{i}
0.5	0.72
1.0	0.79
1.5	0.72
2.0	0.97
2.5	1.03
3.0	0.96
3.5	1.00

Condition number for Normal Equations

Finding the least square solution of $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$ (where \boldsymbol{A} is full rank matrix) using the Normal Equations

$$
\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}
$$

has some advantages, since we are solving a square system of linear equations with a symmetric matrix (and hence it is possible to use decompositions such as Cholesky Factorization)

However, the normal equations tend to worsen the conditioning of the matrix.

$$
\operatorname{cond}\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)=(\operatorname{cond}(\boldsymbol{A}))^{2}
$$

How can we solve the least square problem without squaring the condition of the matrix?

Solving Linear Least Squares with SVD

What we have learned so far...

\boldsymbol{A} is a $m \times n$ matrix where $m>n$ (more points to fit than coefficient to be determined)

Normal Equations: $\boldsymbol{A}^{T} \boldsymbol{A} \boldsymbol{x}=\boldsymbol{A}^{T} \boldsymbol{b}$

- The solution $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$ is unique if and only if $\operatorname{rank}(\mathbf{A})=n$
(\boldsymbol{A} is full column rank)
- $\operatorname{rank}(\mathbf{A})=n \rightarrow$ columns of \boldsymbol{A} are linearly independent $\rightarrow n$ non-zero singular values $\rightarrow \boldsymbol{A}^{T} \boldsymbol{A}$ has only positive eigenvalues $\rightarrow \boldsymbol{A}^{T} \boldsymbol{A}$ is a symmetric and positive definite matrix $\rightarrow \boldsymbol{A}^{T} \boldsymbol{A}$ is invertible

$$
\boldsymbol{x}=\left(\boldsymbol{A}^{T} \boldsymbol{A}\right)^{-\mathbf{1}} \boldsymbol{A}^{T} \boldsymbol{b}
$$

- If $\operatorname{rank}(\mathbf{A})<n$, then \boldsymbol{A} is rank-deficient, and solution of linear least squares problem is not unique.

SVD to solve linear least squares problems

\boldsymbol{A} is a $m \times n$ rectangular matrix where $m>n$, and hence the SVD decomposition is given by:

$$
\boldsymbol{A}=\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{m} \\
\vdots & \ldots & \vdots
\end{array}\right)\left(\begin{array}{ccc}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n} \\
& & 0 \\
& & \vdots \\
& & \\
& &
\end{array}\right)\left(\begin{array}{ccc}
\ldots & \mathbf{v}_{1}^{T} & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & \mathbf{v}_{n}^{T} & \ldots
\end{array}\right)
$$

We want to find the least square solution of $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$, where $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}}$
or better expressed in reduced form: $\boldsymbol{A}=\boldsymbol{U}_{R} \boldsymbol{\Sigma}_{\boldsymbol{R}} \boldsymbol{V}^{\boldsymbol{T}}$

Recall Reduced SVD $m>n$

Shapes of the Reduced SVD

Suppose you compute a reduced SVD $A=U \Sigma V^{T}$ of a 10×14 matrix A. What will the shapes of U, Σ, and V be? Hint: Remember the transpose on V !

SVD to solve linear least squares problems

$$
\begin{gathered}
\boldsymbol{A}=\boldsymbol{U}_{R} \boldsymbol{\Sigma}_{\boldsymbol{R}} \boldsymbol{V}^{\boldsymbol{T}} \\
\boldsymbol{A}=\left(\begin{array}{ccc}
\vdots & \ldots & \vdots \\
\boldsymbol{u}_{1} & \ldots & \boldsymbol{u}_{n} \\
\vdots & \ldots & \vdots
\end{array}\right)\left(\begin{array}{lll}
\sigma_{1} & & \\
& \ddots & \\
& & \sigma_{n}
\end{array}\right)\left(\begin{array}{ccc}
\ldots & \mathbf{v}_{1}^{T} & \ldots \\
\vdots & \vdots & \vdots \\
\ldots & \mathbf{v}_{n}^{T} & \ldots
\end{array}\right)
\end{gathered}
$$

Example:

Consider solving the least squares problem $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$, where the singular value decomposition of the matrix $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{X}$ is:

$$
\left[\begin{array}{cccc}
\frac{1}{\sqrt{2}} & -\frac{1}{\sqrt{2}} & 0 & 0 \\
\frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 1 \\
0 & 0 & 1 & 0
\end{array}\right]\left[\begin{array}{ccc}
14 & 0 & 0 \\
0 & 14 & 0 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]\left[\begin{array}{lll}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{array}\right] \mathbf{x} \cong\left[\begin{array}{c}
12 \\
9 \\
9 \\
10
\end{array}\right]
$$

Determine $\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}$

Example

Suppose you have $\boldsymbol{A}=\boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^{\boldsymbol{T}} \boldsymbol{x}$ calculated. What is the cost of solving

$$
\min _{\boldsymbol{x}}\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2} ?
$$

A) $O(n)$
B) $O\left(n^{2}\right)$
C) $O(\mathrm{mn})$
D) $O(\mathrm{~m})$
E) $O\left(m^{2}\right)$

