Singular Value Decomposition (matrix factorization)

Singular Value Decomposition

The SVD is a factorization of a $m \times n$ matrix into

$$\mathbf{m} \times \mathbf{n} = U \Sigma V^T \mathbf{n} \times \mathbf{n}$$

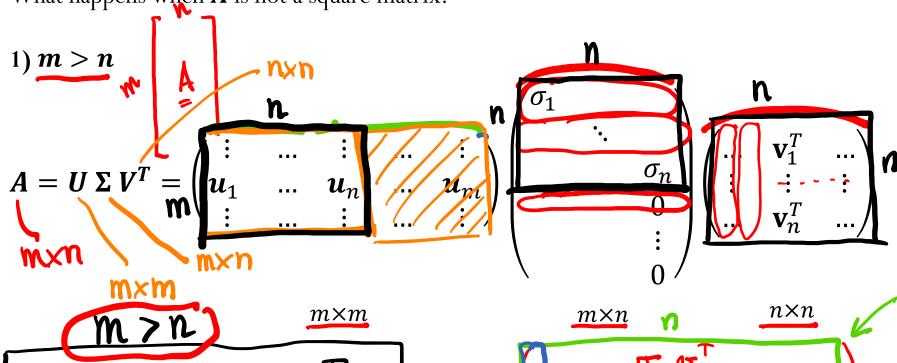
where U is a $m \times m$ orthogonal matrix, V^T is a $n \times n$ orthogonal matrix and Σ is a $m \times n$ diagonal matrix. ui (left singular vectors) singular values

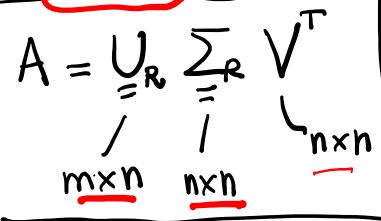
For a square matrix
$$(m = n)$$
:

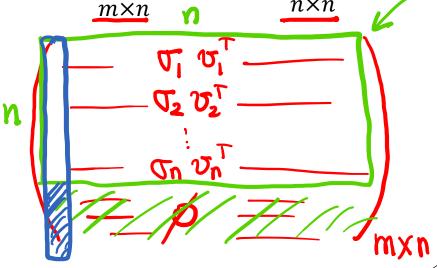
$$A = \begin{pmatrix} \vdots \\ u_1 \\ \vdots \\ \dots \\ \vdots \end{pmatrix} \begin{pmatrix} \sigma_1 \\ \vdots \\ \sigma_n \end{pmatrix} \begin{pmatrix} \vdots \\ v_1 \\ \vdots \\ \dots \\ \vdots \end{pmatrix} \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \dots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots \\ \vdots \end{pmatrix}^T \begin{pmatrix} \vdots \\ v_n \\ \vdots$$

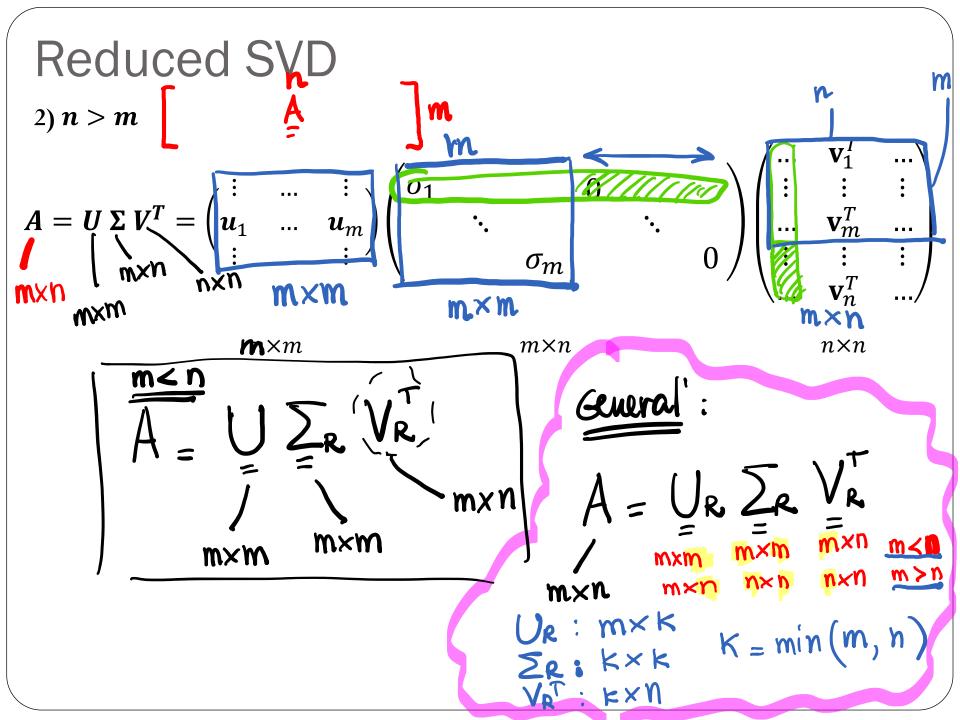
Reduced SVD

What happens when \boldsymbol{A} is not a square matrix?









Let's take a look at the product $\Sigma^T \Sigma$, where Σ has the singular values of a A, a $m \times n$ matrix.

Assume \boldsymbol{A} with the singular value decomposition $\boldsymbol{A} = \boldsymbol{U} \boldsymbol{\Sigma} \boldsymbol{V}^T$. Let's take a look at the eigenpairs corresponding to A^TA : $(x,\lambda)|A^TAx=\lambda x$ $A'A = (U \geq V^T)^T (U \geq V^T)$ (ABC) = CTBTAT $= (V^{T})^{T} \Sigma^{T} U^{T} U \Sigma V^{T}$ $= V \Sigma^T \Sigma V^T$ Diagonalization: ⇒ columns of (V) are the eigenvectors of A'A ⇒diagonal entries of \(\geq \) are the eigenvalues of ATA $(x, \lambda = \text{lig}(\tilde{A}^T A)) | \lambda_i = \sigma_i^2$

In a similar way,

$$AA^{T} = (U \Sigma V^{T}) (U \Sigma V^{T})^{T} (U \Sigma V^{T})^{T}$$

$$= (U \Sigma V^{T}) (V^{T})^{T} (\Sigma \Sigma^{T} V^{T})^{T} (V^{T})^{T} \Sigma^{T} U^{T}$$

$$= U \Sigma V^{T} V \Sigma^{T} U^{T}$$

$$= U \Sigma \Sigma^{T} U^{T} = U \Sigma V^{T} V \Sigma^{T} U^{T}$$

Hence $AA^T = U \Sigma^2 U^T \Sigma^2 U^T$ $AA^T = U \Sigma^2 U^T \Sigma^2 U^T$

Recall that columns of U are all linear independent (orthogonal matrices), then from diagonalization ($B = XDX^{-1}$), we get:

A columns of U are the eigenvelors of AA

• The columns of \boldsymbol{U} are the eigenvectors of the matrix $\boldsymbol{A}\boldsymbol{A}^T$

How can we compute an SVD of a matrix A?

1. Evaluate the n eigenvectors \mathbf{v}_i and eigenvalues λ_i of $\mathbf{A}^T\mathbf{A}$

after class:

(sorry =)

2. Make a matrix V from the normalized vectors \mathbf{v}_i . The columns are called "right singular vectors".

$$V = \begin{pmatrix} \vdots & \dots & \vdots \\ \mathbf{v}_1 & \dots & \mathbf{v}_n \\ \vdots & \dots & \vdots \end{pmatrix}$$

3. Make a diagonal matrix from the square roots of the eigenvalues.

Singular values $\nabla_i^2 = \lambda_i^2$

$$\Sigma = \begin{pmatrix} \sigma_1 \\ \vdots \\ \sigma_n \end{pmatrix}$$
 $\sigma_i = \sqrt{\lambda_i}$ and $\sigma_1 \ge \sigma_2 \ge \sigma_3 \dots$

4. Find $U: A = U \Sigma V^T \implies U \Sigma = A V$. The columns are called the "left singular vectors".

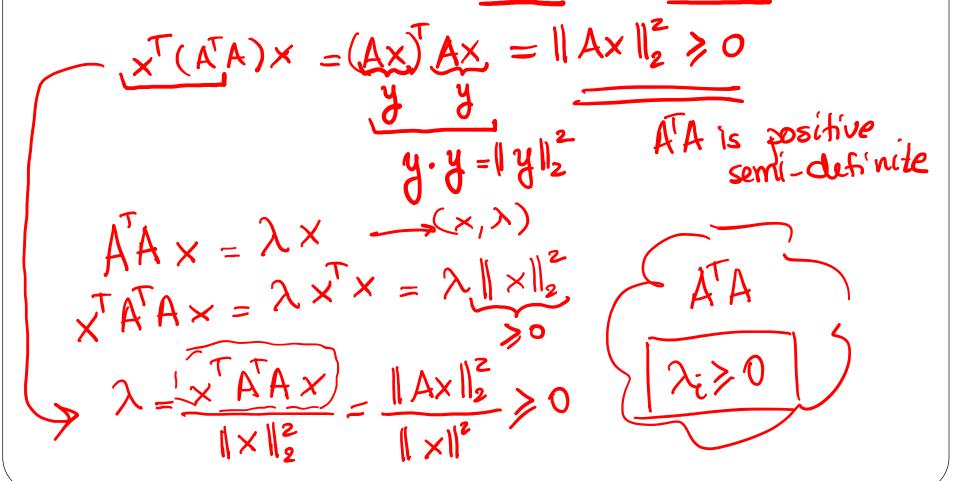
True or False?

A has the singular value decomposition $A = U \Sigma V^T$.

- The matrices U and V are not singular T
- The matrix Σ can have zero diagonal entries $\overline{\Gamma}$
- $||U||_2 = 1$ True
- The SVD exists when the matrix \boldsymbol{A} is singular
- The algorithm to evaluate SVD will fail when taking the square root of a negative eigenvalue False λ_i , $\lambda_i = 10$.

Singular values are always non-negative

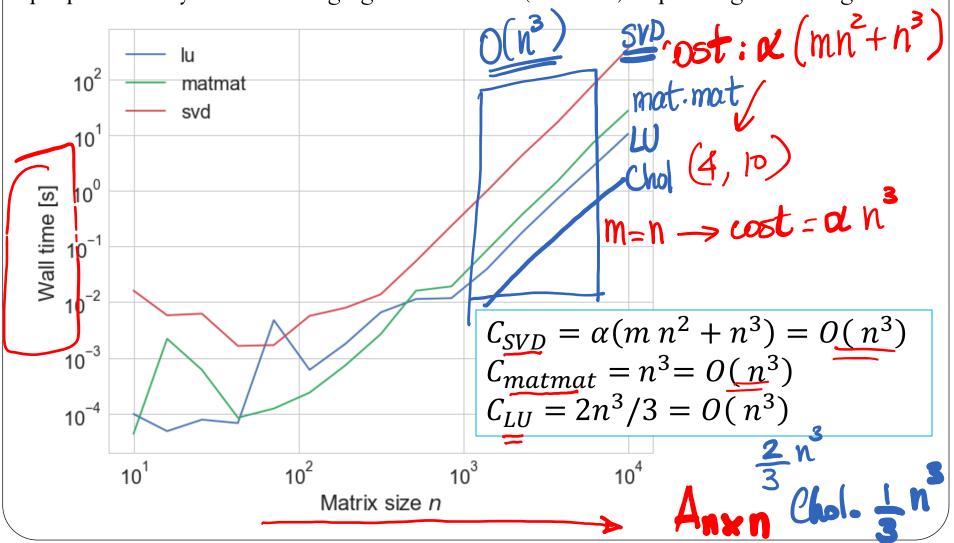
- A matrix is positive definite if $x^T B x > 0$ for $\forall x \neq 0$
- A matrix is positive semi-definite if $x^T B x \ge 0$ for $\forall x \ne 0$



Cost of SVD

$A_{\mathsf{m} \mathsf{x} \mathsf{r}}$

The cost of an SVD is proportional to $mn^2 + n^3$ where the constant of proportionality constant ranging from 4 to 10 (or more) depending on the algorithm.



SVD summary:

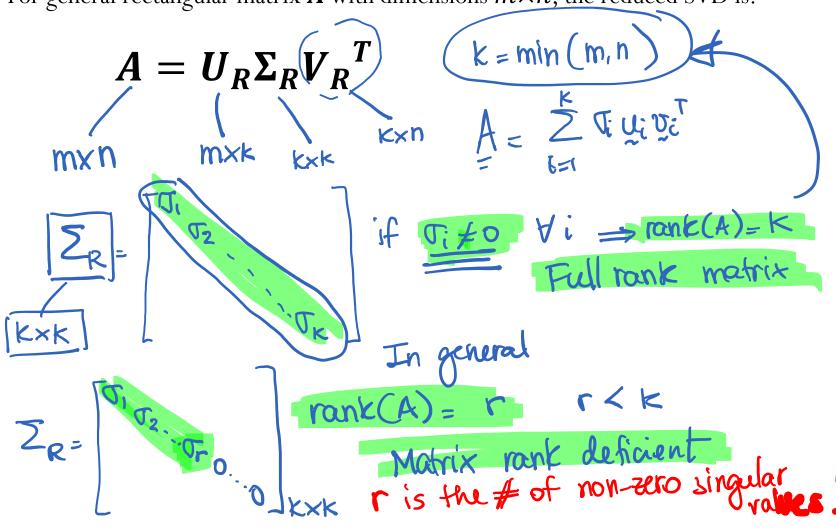
- The SVD is a factorization of a $m \times n$ matrix into $A = U \sum V^T$ where U is a $m \times m$ orthogonal matrix, V^T is a $n \times n$ orthogonal matrix and Σ is a $m \times n$ diagonal matrix.
- In reduced form: $A = U_R \Sigma_R V_R^T$, where U_R is a $m \times k$ matrix, Σ_R is a $k \times k$ matrix, and V_R is a $n \times k$ matrix, and $k = \min(m, n)$.
- The columns of V are the eigenvectors of the matrix A^TA , denoted the right singular vectors.
- The columns of \boldsymbol{U} are the eigenvectors of the matrix $\boldsymbol{A}\boldsymbol{A}^T$, denoted the left singular vectors.
- The diagonal entries of Σ^2 are the eigenvalues of A^TA . $\sigma_i = \sqrt{\lambda_i}$ are called the singular values.
- The singular values are always non-negative (since A^TA is a positive semi-definite matrix, the eigenvalues are always $\lambda \geq 0$)

Singular Value Decomposition (applications)

1) Determining the rank of a matrix

Rank of a matrix

For general rectangular matrix \mathbf{A} with dimensions $m \times n$, the reduced SVD is:



Rank of a matrix

- The rank of A equals the number of non-zero singular values which is the same as the number of non-zero diagonal elements in Σ .
- Rounding errors may lead to small but non-zero singular values in a rank deficient matrix, hence the rank of a matrix determined by the number of non-zero singular values is sometimes called "effective rank".
- The right-singular vectors (columns of V) corresponding to vanishing singular values span the null space of A.
- The left-singular vectors (columns of U) corresponding to the non-zero singular values of A span the range of A.

2) Pseudo-inverse

- **How to fix it:** Define the Pseudo Inverse
- Pseudo-Inverse of a diagonal matrix:

$$(\mathbf{\Sigma}^{+})_{i} = \begin{cases} \frac{1}{\sigma_{i}}, & \text{if } \sigma_{i} \neq 0 \\ 0, & \text{if } \sigma_{i} = 0 \end{cases}$$

• Pseudo-Inverse of a matrix A:

$$\int A^+ = V \Sigma^+ U^T$$

I matrix:

A =
$$A$$

A = A

rank(+)= 5

3) Matrix norms

$$\lambda(U\times)^TU\times=\chi^TU^TU\times=\chi^TX$$

The Euclidean norm of an orthogonal matrix is equal to 1

$$||U||_{2} = \max_{||x||_{2}=1} ||Ux||_{2} = \max_{||x||_{2}=1} \sqrt{(Ux)^{T}(Ux)} = \max_{||x||_{2}=1} \sqrt{x^{T}x} = \max_{||x||_{2}=1} ||x||_{2} = 1$$

The Euclidean norm of a matrix is given by the largest singular value

$$\|A\|_{2} = \max_{\|x\|_{2}=1} \|Ax\|_{2} = \max_{\|x\|_{2}=1} \|\underline{U} \Sigma V^{T} x\|_{2} = \max_{\|x\|_{2}=1} \|\underline{\Sigma} V^{T} x\|_{2}$$

$$= \max_{\|V^{T} x\|_{2}=1} \|\underline{\Sigma} V^{T} x\|_{2} = \max_{\|y\|_{2}=1} \|\underline{\Sigma} O\|_{2}$$

$$= \max_{\|V^{T} x\|_{2}=1} \|\underline{\Sigma} V^{T} x\|_{2} = \max_{\|y\|_{2}=1} \|\underline{\Sigma} O\|_{2}$$

$$= \max_{\|y\|_{2}=1} \|\underline{\Sigma} O\|_{2} = \max_{\|y\|_{2}=1} \|\underline{\Sigma} O\|_{2}$$

$$= \max_{\|x\|_{2}=1} \|\underline{\Sigma} O\|_{2} = \max_{\|y\|_{2}=1} \|\underline{\Sigma} O\|_{2} = \max_{\|y\|_{2}=1} \|\underline{\Sigma} O\|_{2}$$

$$= \max_{\|x\|_{2}=1} \|\underline{\Sigma} O\|_{2} = \max_{\|y\|_{2}=1} \|\underline{\Sigma} O\|_{2} = \max_{\|y\|_{2}=1} \|\underline{\Sigma} O\|_{2}$$

$$= \max_{\|y\|_{2}=1} \|\underline{\Sigma} O\|_{2} = \max_{\|y\|_{2}=1} \|\underline$$

4) Norm for the inverse of a matrix

$$\|A\|_2 = \Gamma_{\text{max}} = \max \Gamma_{i}$$

The Euclidean norm of the inverse of a square-matrix is given by:

Assume here A is full rank, so that A^{-1} exists

$$\|A^{-1}\|_2 = \max_{\|x\|_2=1} \|(U \Sigma V^T)^{-1} x\|_2$$

$$A = U \Sigma V^T$$
 $A^{-1} = (U \Sigma V^T)^{-1}$

$$||A^{-1}||_2 = \max_{||x||_2=1} ||V \Sigma^{-1} U^T x||_2$$

Since
$$\| \boldsymbol{U} \|_2 = 1$$
, $\| \boldsymbol{V} \|_2 = 1$ and $\boldsymbol{\Sigma}$ is diagonal then

$$||A^{-1}||_2 = \frac{1}{\sigma_{min}}$$

 σ_{min} is the smallest singular value

5) Norm of the pseudo-inverse matrix

The norm of the pseudo-inverse of a $m \times n$ matrix is: $A^{+} = V\Sigma^{+}U^{T}$ $A^{+} = V\Sigma^{+}U^{T}$ $A^{-} = V\Sigma^{-}U^{T}$ $A^{-} = V\Sigma^{-}U^{T}$ $\Delta^{-} = U\Sigma^{-}U^{T}$ $\Delta^{-} = U\Sigma^{-}U^{T}$

where σ_r is the smallest **non-zero** singular value. This is valid for any matrix, regardless of the shape or rank.

Note that for a full rank square matrix, $||A^+||_2$ is the same as $||A^{-1}||_2$.

Zero matrix: If \mathbf{A} is a zero matrix, then \mathbf{A}^+ is also the zero matrix, and $\|\mathbf{A}^+\|_2 = 0$

6) Condition number of a matrix

The condition number of a matrix is given by

$$cond_2(A) = ||A||_2 ||A^+||_2$$

If the matrix is full rank: rank(A) = min(m, n)

$$cond_2(A) = \sigma_{min}$$

where σ_{max} is the largest singular value and σ_{min} is the smallest singular value

If the matrix is rank deficient:
$$rank(A) < min(m,n) = cond_2(A) = \infty$$

7) Low-Rank Approximation

We will again use the SVD to write the matrix A as a sum of outer products (of left and right singular vectors) – here for m > n without loss of generality:

$$m{A} = egin{pmatrix} dash & \dots & dash \ m{u}_1 & \dots & m{u}_m \ dash & \dots & dash \ m{u}_1 & \dots & m{u}_m \ dash & \ddots & m{0} \ m{v}_1 & \dots & m{v}_n^T & \dots \ m{v}_n^T & \dots \end{pmatrix}$$

$$= \begin{pmatrix} \vdots & \dots & \vdots \\ \boldsymbol{u}_1 & \dots & \boldsymbol{u}_n \\ \vdots & \dots & \vdots \end{pmatrix} \begin{pmatrix} \dots & \sigma_1 \ \mathbf{v}_1^T & \dots \\ \vdots & \vdots & \vdots \\ \dots & \sigma_n \ \mathbf{v}_n^T & \dots \end{pmatrix}$$

$$= \sigma_1 \mathbf{u}_1 \mathbf{v}_1^T + \sigma_2 \mathbf{u}_2 \mathbf{v}_2^T + \dots + \sigma_n \mathbf{u}_n \mathbf{v}_n^T$$

rank(A) = n Full rank matrix

7) Low-Rank Approximation (cont.)

The best $\operatorname{rank-}k$ approximation for a $m \times n$ matrix A, (where $k \leq \min(m, n)$) is the one that minimizes the following problem:

$$\min_{A_k} |A - A_k| \rightarrow \min_{A_k} \min_{A_k} error$$

$$\sin_{A_k} |A - A_k| \rightarrow \min_{A_k} error$$

$$\operatorname{such that} \operatorname{rank}(A_k) \leq k, \quad \operatorname{rank}(A_k) = n = 10$$

$$\operatorname{Imax} A \operatorname{rank}(A_k) \leq k, \quad \operatorname{rank}(A_k) \leq k, \quad \operatorname{rank}(A_k) \leq k.$$
When using the induced 2 norms the best rank k approximation is given by

When using the induced 2-norm, the best ${f rank}$ - ${m k}$ approximation is given by:

$$A_{k} = \sigma_{1} \boldsymbol{u}_{1} \boldsymbol{v}_{1}^{T} + \sigma_{2} \boldsymbol{u}_{2} \boldsymbol{v}_{2}^{T} + \dots + \sigma_{k} \boldsymbol{u}_{k} \boldsymbol{v}_{k}^{T}$$

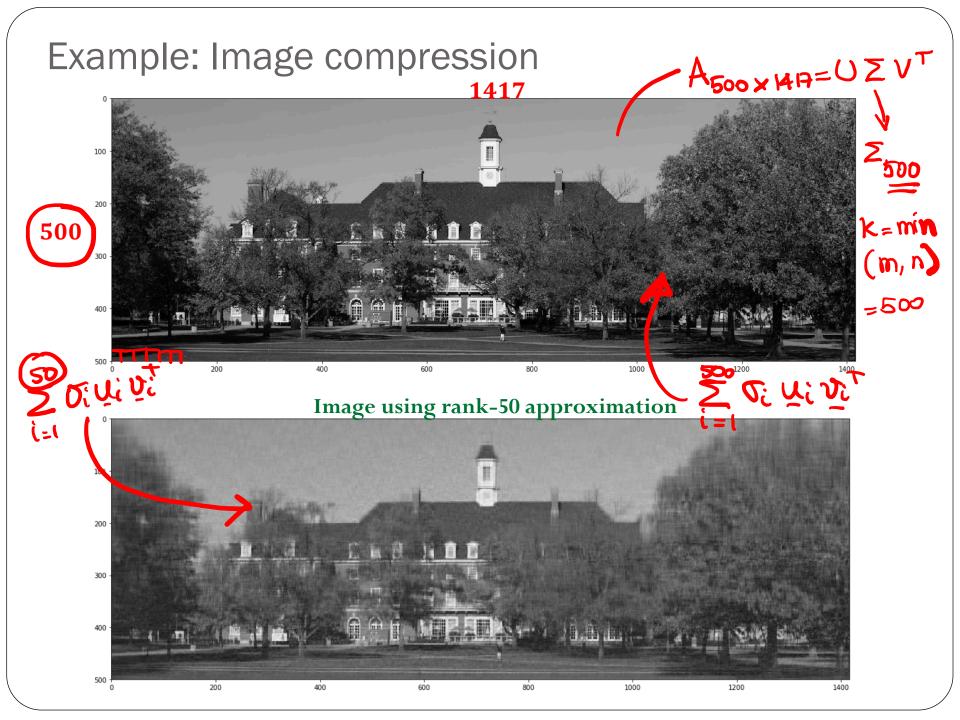
$$\sigma_{1} \geq \sigma_{2} \geq \sigma_{3} \dots \geq 0$$

$$A_{3} = \sum_{i=1}^{n} \sigma_{i} u_{i} v_{i}^{T}$$

Note that rank(A) = n and $rank(A_k) = k$ and the norm of the difference betweek the matrix and its approximation is:

$$\begin{array}{c|c}
\hline
\Gamma_{k+2} & U_{k+2} & U_{k+3} + \\
\hline
 & + & \Gamma_{n} & U_{n} & U_{n}^{T}
\end{array}$$

$$\begin{array}{c|c}
\hline
 & = & \Gamma_{k+1} & ||A - A_{k}|| = \Gamma_{k+1} \\
\hline
 & = & \Gamma_{k+1} & ||A - A_{k}|| = \Gamma_{k+1}
\end{array}$$



8) Using SVD to solve square system of linear equations

If \underline{A} is a $n \times n$ square matrix and we want to solve $\underline{A} \times \underline{x} = \underline{b}$ we can use

the SVD for
$$\boldsymbol{A}$$
 such that

$$Ax = b \rightarrow U \Sigma V^T x = b$$

$$\sum_{v} V^{T} \times = V^{T} b \left(V^{-1} = V^{T} \right)$$

$$(2)(2)y = U^Tb \rightarrow easy! Solve for y O(n)$$

(3)
$$Vx = y \rightarrow x = Vy \rightarrow matrix vector mult. Of$$