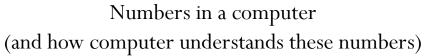
CS 357 - Numerical Methods 1

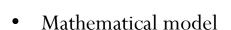
Prof. Mariana Silva SPRING 2020

Course overview


- Course website:
 - Schedule
 - Calendar
 - Syllabus
 - Office hours queue
 - Python tutorial
- PrairieLearn demo:
 - HW
 - Quiz

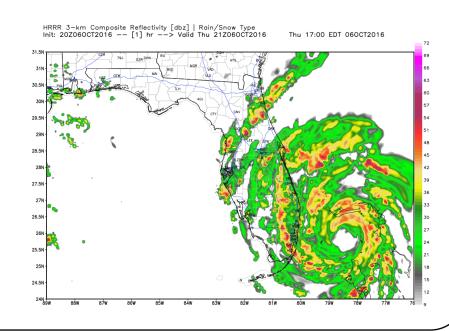
Introduction and "Big Idea"

Prof. Mariana Silva SPRING 2020


What are...

Numerical Methods?

- o "algorithms" derived from math ideas to solve equations numerically
- Complexity of the problem
 - o Slow vs fast
- Accuracy
 - Accurate vs inaccurate


Method = Math + Complexity + Accuracy

Why is this course important?

- Understanding and reconstruction of known problems
 - Natural disasters
 - Catastrophic failures
- 2. Prediction of unknown situations
 - Weather conditions
 - O Behavior of new materials
- 3. Optimization of existing problems
 - Image recognition
 - Reduce fabrication costs

Explosion of Ariane 5 in 1996

Goals for this course

- Understand how numbers are represented in the computer.
- When developing code, you will likely run into numerical errors. What are the sources of these errors?
- How can you avoid numerical errors?
- How can you choose a suitable algorithm for a given application?
- Use existing libraries to solve real applications.

(Numerical) **Method** = **Math** + Complexity + Accuracy

Mathematical model:

What equations can we use to represent our problem?

Accuracy:

Are we getting accurate results?
Why is the method not giving me the correct solution?

Complexity:

How long does it take to solve this problem? Is it cost-effective?

Your entire CS 357 semester in a few slides!

Are you ready?

Accuracy

- Why a numerical method might not give the right answer?
 - Computers have finite representation of numbers
 - Sometimes the "right answer" cannot be represented in a finite way
 - > Example:

```
\pi = 3.1415926535897932384626433832795028841971...
```

Demo: Waiting for the number 1

```
from time import sleep

x = 0.0

while x != 1.0:
    x += 0.1
    print(repr(x))

sleep(0.1)
```

What is going to happen when we run this code?

- A. Code will stop after printing 11 values for x
- B. Code will stop after printing 10 values for x
- C. Code will not stop
- D. Code will not start

Monte Carlo Methods

Texas Holdem Game: we would like to determine the probability of winning of a given starting hand

Physical experiment vs
Numerical experiment

Numerical Experiments

- What do we want to know about a numerical experiment?
 - 1. What questions are we attempting to answer?
 - 2. What is the outcome of the experiment?
 - 3. Is it repeatable?
 - 4. Is the answer accurate?
 - 5. How long will it take?

Time vs accuracy trade-off

Question: Is running this method (with a certain accuracy) a good use of our time and/or computer resources?

Complexity

How long does it take to solve a problem?

Given A, B matrices of size $m \times m$, the matrix-matrix multiplication $A \cdot B$ takes τ seconds.

How long does it take to perform $C \cdot D$, matrices of size $2m \times 2m$?

```
from time import process_time
import numpy as np
from time import process_time
```

```
n = 2000
A = np.random.randn(n,n)
B = np.random.randn(n,n)

t = process_time() # store the time
C = A @ B
t = process_time() - t
print(t)
```

```
A = np.random.randn(2*n,2*n)
B = np.random.randn(2*n,2*n)

t2 = process_time() # store the time
C = A @ B

t2 = process_time() - t2
print(t2)
```

Linear system of equations: Image processing

How can we use linear operators to create blurred images? How can we do the inverse process?

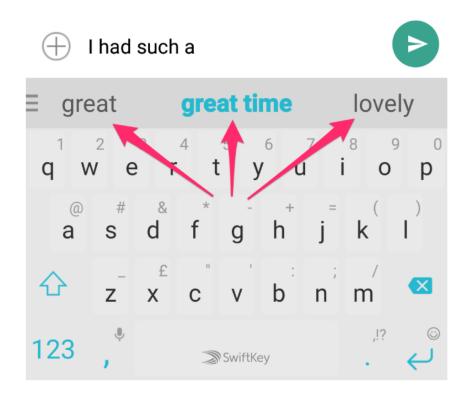
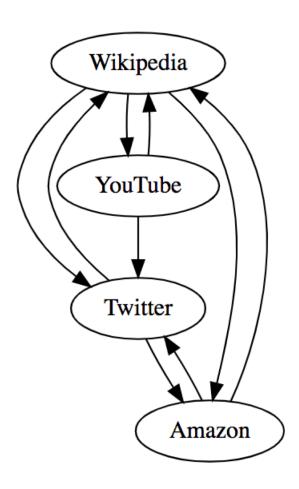
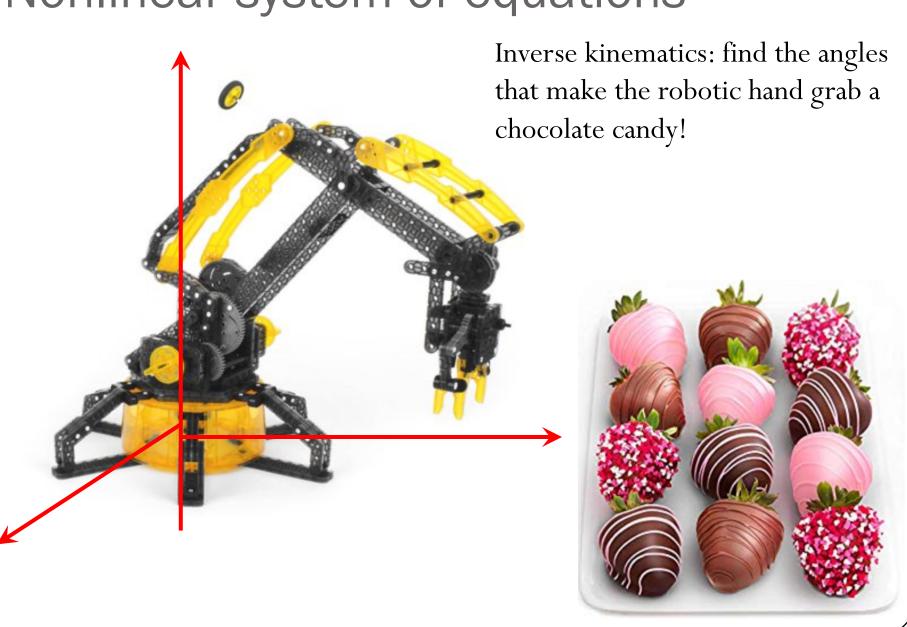


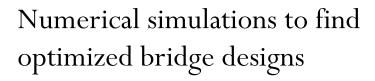
Image credit: https://datacarpentry.org/image-processing/

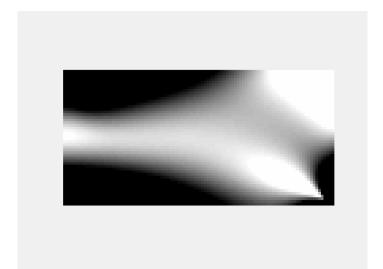


Markov chain


Word prediction

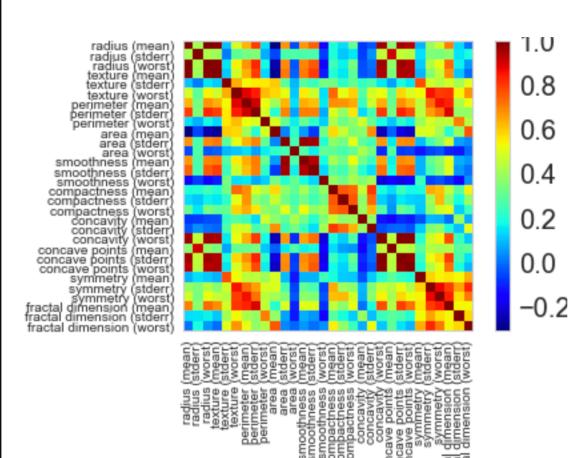
Page Rank

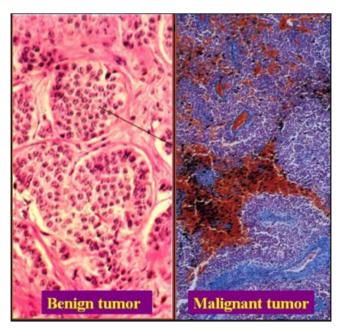

Nonlinear system of equations



Optimization

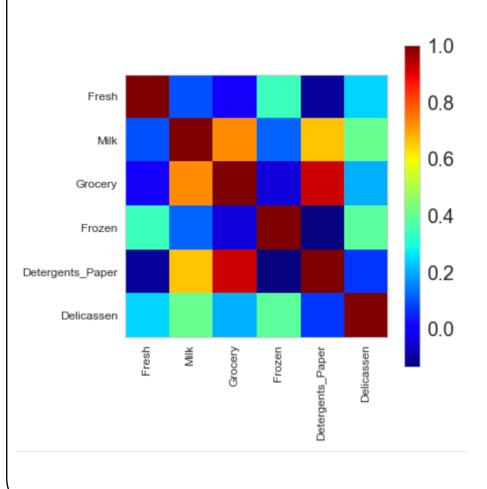
Bridge design (high school projects)

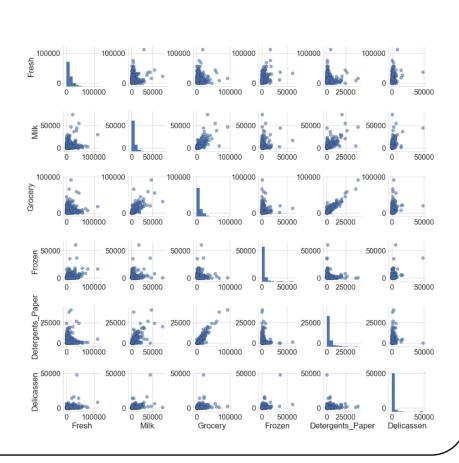




(Tolerance for members to be considered connected is 1/2 square grid.)

Linear Least Squares


Dataset containing the characteristics of cells for several patients. Can we make predictions if cells are benign or malignant?



Principal component analysis

Sometimes our dataset has too many features? How can we reduce the feature space and still keep the most important information?

