Meeting Mariana

Teaching Associate Professor
Education Innovation Fellow
https://mfsilva.web.illinois.edu
mfsilva@illinois.edu

Research Area: Computers and Education

- Started teaching at UIUC Sp 2012
- Taught 10 different courses
- Teaching CS 357 since Sp 2018
My research interests

○ Fostering collaborations and group work in the classroom

○ Exploration of technological innovations for large-scale teaching
 • Drawing tools in PrairieLearn
 • Incorporate Jupyter notebooks in PrairieLearn workspaces
 • Integrate collaborative learning features in PrairieLearn
 • Developed web-tool to build teams
 • Training and mentoring for innovation and course design

○ My most recent professional adventures
 • Co-founded PrairieLearn Inc in 2021
 • Received NSF/SBIR grant in August 2023
Meet Course Staff

https://courses.engr.illinois.edu/cs357
CampusWire

• All communication will happen via CampusWire. NO EMAILS!

• Check it daily!

• Important course announcements will be pinned.
Other important announcements

• Eating is NOT allowed in classroom. You must eat your lunch before or after class.

• Course Survey and Consent Form
Office Hours

https://courses.engr.illinois.edu/cs357/pages/contact.html

• Office hours start next week (in-person and via Zoom)
Course Website - Syllabus

https://courses.engr.illinois.edu/cs357/pages/syllabus.html
PrairieLearn Content

- Lecture
- Workspaces
- Group Activity
- Homework
- Machine Problem
- Practice Quiz
First week of classes

BOTH Tuesday and Thursday:

• hybrid class - online and in-person synchronously
• Attendance not required, but strongly encouraged!
• Recording will be available at later time
• Mock Group Activity on Thursday. Great opportunity to meet people.
Starting from week 2

Tuesday:
• Group activity
• Attendance required only for students in section N
• Section M students should still consider in-person support/interactions

Thursday:
• Optional Study Hours
• No Zoom option
• Not recorded
• All students that want to get this additional help should go to CIF
What do we know about online vs in-person sections in CS 357?

In-person and Online students have similar performance on all “learning” assignments.
In-person students have ON AVERAGE a small (2.4%) score advantage on quizzes when compared to online students.
Sense of Belonging

Survey questions regarding perceived comfort, support, and isolation

Increased SoB over the semester

In-person students report higher increase in SoB when compared to online students

Online section: not significant increase in SoB for men; significant increase in SoB for women
Regarding other CS courses

Regarding current CS course

First-Generation only

\[\Delta = 1.3 \ (p < 0.01) \]

\[\Delta = 0.5 \ (p < 0.01) \]

URM only

\[\Delta = 1.06 \ (p = 0.087) \]

\[\Delta = 0.35 \ (p = 0.338) \]

in-person online

start of semester end of semester

According to the figures, there is a noticeable difference in the sense of belonging between in-person and online courses for both URM and First-Generation students. The data suggests that First-Generation students experience a more significant increase in the sense of belonging from start to end of the semester compared to URM students, with statistically significant results for both in-person and online courses.
I want to be in the same section as some of my friends

I prefer the flexibility of attending class online

I will do better in the class in this section

I like having the opportunity to interact with the professor and other students

Students select the section that best fit their preferences
GA support for section M students

1. Grainger Library (in-person)
 • Two TAs will be at the room 404
 • Student groups should find tables/seats outside 404: main study area on the 4th floor or any other location at Grainger

2. Siebel Basement (in-person)
 • Two TAs will be at the Tutoring Center
 • Student groups should find tables/seats at the tutoring center

3. Zoom (online)
 • Four TAs will be connected to Zoom
 • Use Queue to request help
Introduction and “Big Idea”
What are... Numerical Methods?

Numbers in a computer (and how computer understands these numbers)

- Mathematical model
 - “algorithms” derived from math ideas to solve equations numerically
- Complexity of the problem
 - Slow vs fast
- Accuracy
 - Accurate vs inaccurate

Method = Math + Complexity + Accuracy
Why is this course important?

1. Understanding and reconstruction of known problems
 - Natural disasters
 - Catastrophic failures

2. Prediction of unknown situations
 - Weather conditions
 - Behavior of new materials

3. Optimization of existing problems
 - Image recognition
 - Reduce fabrication costs

Explosion of Ariane 5 in 1996
Goals for this course

• Understand how numbers are represented in the computer.

• When developing code, you will likely run into numerical errors. What are the sources of these errors?

• How can you avoid numerical errors?

• How can you choose a suitable algorithm for a given application?

• Use existing libraries to solve real applications.
(Numerical) \textbf{Method} = \textbf{Math} + \text{Complexity} + \text{Accuracy}

\textbf{Mathematical model:}

What equations can we use to represent our problem?

\textbf{Accuracy:}

Are we getting accurate results?
Why is the method not giving me the correct solution?

\textbf{Complexity:}

How long does it take to solve this problem?
Is it cost-effective?
Your entire CS 357 semester in a few slides!

Are you ready?
Accuracy

• Why a numerical method might not give the right answer?
 ➢ Computers have finite representation of numbers
 ➢ Sometimes the “right answer” cannot be represented in a finite way
 ➢ Example:

\[\pi = 3.1415926535897932384626433832795028841971… \]
Demo: Waiting for the number 1

```python
from time import sleep

x = 0.0

while x != 1.0:
    x += 0.1
    print(repr(x))

sleep(0.1)
```

What is going to happen when we run this code?

A. Code will stop after printing 11 values for x
B. Code will stop after printing 10 values for x
C. Code will not stop
D. Code will not start
Monte Carlo Methods

Texas Holdem Game: we would like to determine the probability of winning of a given starting hand

Physical experiment vs Numerical experiment
Numerical Experiments

• What do we want to know about a numerical experiment?
 1. What questions are we attempting to answer?
 2. What is the outcome of the experiment?
 3. Is it repeatable?
 4. Is the answer accurate?
 5. How long will it take?

 Time vs accuracy trade-off

 Question: Is running this method (with a certain accuracy) a good use of our time and/or computer resources?
Given A, B matrices of size $m \times m$, the matrix-matrix multiplication $A \cdot B$ takes τ seconds.

How long does it take to perform $C \cdot D$, matrices of size $2m \times 2m$?
Linear system of equations: Image processing

How can we use linear operators to create blurred images? How can we do the inverse process?

Image credit: https://datacarpentry.org/image-processing/
Markov chain

Word prediction

I had such a
great
great time
lovely

Page Rank

Wikipedia
YouTube
Twitter
Amazon
Nonlinear system of equations

Inverse kinematics: find the angles that make the robotic hand grab a chocolate candy!
Optimization

Bridge design (high school projects)

Numerical simulations to find optimized bridge designs

http://cs357-stu-01.cs.illinois.edu/
Linear Least Squares

Dataset containing the characteristics of cells for several patients. Can we make predictions if cells are benign or malignant?
Sometimes our dataset has too many features? How can we reduce the feature space and still keep the most important information?
Second day of classes...
Assessments

Learning Flow for each Module

1. Complete lectures on Tuesdays and Thursdays as they open
 • Get up to 100% credit by completing them before Tuesday 12pm of the week after they open
 • Get up to 80% credit by completing them before Tuesday midnight of the corresponding quiz week
 • Get up to 50% credit by completing them before last day of classes

2. Complete the Homework
 • Get up to 100% credit by completing them within one week after they open
 • Get up to 96% credit by completing them before Tuesday midnight of the corresponding quiz week
 • Get up to 50% credit by completing them before last day of classes

3. Complete MPs (when available) – similar deadline scheme as HW

4. For additional examples, look at the Demos (not for credit)

Practice Quizzes

1. You are encouraged to start the practice quizzes only after you complete the learning flow above

2. Complete at least one entire practice quiz as if you were taking the quiz (no access to resources, timed, etc). This will give you a good idea of how ready you are.
In general lectures and HWs will open at 8am Tuesdays and Thursdays.

Usually, Demos will open with the corresponding lectures (sometimes they will appear after the GA)

<table>
<thead>
<tr>
<th>Week 1</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tue, Aug 22, lecture 1</td>
</tr>
<tr>
<td>Syllabus and Course Content Overview</td>
</tr>
<tr>
<td>Complete your asynchronous lecture today!</td>
</tr>
<tr>
<td>L1: Introduction to CS 357 (NOT FOR CREDIT)</td>
</tr>
<tr>
<td>L2: Introduction to Python</td>
</tr>
<tr>
<td>Also opening today:</td>
</tr>
<tr>
<td>HW1: Linear Algebra Review (NOT FOR CREDIT)</td>
</tr>
<tr>
<td>HW2: Introduction to Python</td>
</tr>
<tr>
<td>Due today:</td>
</tr>
</tbody>
</table>

| Thu, Aug 24, lecture 2 |
| **Intro to Python + mock group work** |
| Complete your asynchronous lecture today |
| L3: Errors, Big-O notation, plots |
| Also opening today: |
| HW3: Errors and Big-O |
| Due today: |

<table>
<thead>
<tr>
<th>Week 2</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tue, Aug 29, lecture 3</td>
</tr>
<tr>
<td>GA: Working with Python (NOT FOR CREDIT)</td>
</tr>
<tr>
<td>Complete your asynchronous lecture today!</td>
</tr>
<tr>
<td>L4a: Floating point</td>
</tr>
<tr>
<td>Also opening today:</td>
</tr>
<tr>
<td>HW4a: Floating point</td>
</tr>
<tr>
<td>Q1P: Linear Algebra + Python + Errors</td>
</tr>
<tr>
<td>Due today:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>HW2: Introduction to Python</th>
</tr>
</thead>
<tbody>
<tr>
<td>Module 2. Python</td>
</tr>
<tr>
<td>L2: Introduction to Python</td>
</tr>
<tr>
<td>HW2: Introduction to Python</td>
</tr>
<tr>
<td>D2: Demo: Additional Python Tutorial</td>
</tr>
<tr>
<td>GA 1: Working with Python (NOT FOR CREDIT)</td>
</tr>
<tr>
<td>This will be the GA next Tuesday!</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Module 1. Introduction</th>
</tr>
</thead>
<tbody>
<tr>
<td>L1: Introduction to CS 357 (NOT FOR CREDIT)</td>
</tr>
<tr>
<td>HW1: Linear Algebra Review (NOT FOR CREDIT)</td>
</tr>
<tr>
<td>D1: Demo: Intro to Numerical Methods</td>
</tr>
<tr>
<td>GA 0: Get started with GAs (NOT FOR CREDIT)</td>
</tr>
<tr>
<td>GA00: Workspaces for collaborative learning (NOT FOR CREDIT)</td>
</tr>
</tbody>
</table>
Quiz 1: Modules 1-3

PQ1 Practice Quiz 1: Linear Algebra + Python + Errors (NOT FOR CREDIT)

Q1 Quiz 1: Linear Algebra + Python + Errors

Module 3. Errors and Big-O

L3 Errors, Big-O notation, plots

HW3 Errors and Big-O

D3 Demo: Errors 🤖

Module 2. Python

L2 Introduction to Python

HW2 Introduction to Python

D2 Demo: Additional Python Tutorial

GA 1 Working with Python (NOT FOR CREDIT) 🤖

Module 1. Introduction

L1 Introduction to CS 357 (NOT FOR CREDIT)

HW1 Linear Algebra Review (NOT FOR CREDIT)

D1 Demo: Intro to Numerical Methods

GA 0 Get started with GAs (NOT FOR CREDIT) 🤖

GA00 Workspaces for collaborative learning (NOT FOR CREDIT) 🤖
L2: Introduction to Python

Resources: Notes and complete slides

<table>
<thead>
<tr>
<th>Question</th>
<th>Value</th>
<th>History</th>
<th>Awarded points</th>
</tr>
</thead>
<tbody>
<tr>
<td>Self-guided notebook (no pre-recorded video)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>L2.1. Prerequisite survey</td>
<td>1</td>
<td></td>
<td>0/1</td>
</tr>
<tr>
<td>L2.2. Python intro - self-guided notebook</td>
<td>1</td>
<td></td>
<td>0/1</td>
</tr>
</tbody>
</table>

L2.2. Python intro - self-guided notebook

Open the workspace below and complete the IPython notebook.

Select one of the answers below (there is no correct answer):

- (a) I completed the notebook, and I found it helpful.
- (b) I completed the notebook, but I did not find it helpful.
- (c) I did not complete the notebook because I already know how to use Python.
- (d) I did not complete the notebook (for other reasons).
For the Mock GA today, you will need to:
- Define Python variables
- Define 1d numpy array
- Perform simple operations with numpy arrays
Quiz Schedule

If you are supposed to take the quiz at CBTF

<table>
<thead>
<tr>
<th>Action</th>
<th>Exam</th>
<th>First date</th>
<th>Last date</th>
</tr>
</thead>
<tbody>
<tr>
<td>Make a reservation</td>
<td>CS 357 (Sp23): Quiz 1</td>
<td>2023-01-30 00:01:00 (CST)</td>
<td>2023-02-01 23:59:00 (CST)</td>
</tr>
</tbody>
</table>

If you are supposed to take the BYOD quiz at CIF 3031

<table>
<thead>
<tr>
<th>Exam</th>
<th>Date</th>
<th>Duration</th>
<th>Type</th>
<th>Location</th>
<th>Accommodations</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS 357 (Fa23): Quiz 1</td>
<td>2023-09-07 12:30:00 (CDT)</td>
<td>50 min</td>
<td>In-person</td>
<td>CIF 3031</td>
<td></td>
</tr>
</tbody>
</table>

PrairieTest will be updated this weekend. On Monday, you should be able to either:
• See your pre-assigned registration for BYOD
• Be able to register for your CBTF quiz
Complexity

Given A, B matrices of size 300×300, the matrix-matrix multiplication $A \cdot B$ takes 2 seconds.

How long does it take to perform $C \cdot D$, matrices of size 3000×3000?
Collaborative Learning

- Complete weekly activity in groups
- Week 1 and 2: randomly assigned groups via Zoom
- Week 3-8: fixed groups
- Week 9-14: fixed groups
We will use the results of this survey to create the groups for at least the first half of the semester (GA2-7). We will give students the opportunity to change groups in the second half of the semester.

If you know 2-3 other students taking CS 357 this semester, and you have agreed to complete the group activities together, you can request to be placed in the same group.

To submit this request, your group must select a group name, so that all members can submit the same answer below:

In the entry field below, enter your group's selection for the group name.

group name:

Important notes:

- Every student that enters the same group name will be placed in the same group.
- Make sure you agree on a creative and unique group name. For example, you can use the members last names combined. You don't want to be placed in the wrong group by mistake.
- **Groups must have 2-3 students.** If more than 3 students or less than 2 students submit this request using the same group name, ALL these students will be placed in groups at random!
- **Groups can only be formed with students registered in the same section.**

Students who do not submit this survey will be placed at a group at random. Students who are assigned to a random group in section N (online) must attend the Zoom meeting at 12:30pm at least during week 3 (they will be able to make other arrangements at that time).

If you change your mind, you can enter other submissions (by clicking "Save & Grade) until this survey deadline on Friday of week 2. The last submitted answer will be the one used to form the groups. Make sure you triple-check your submission with the other group members!

If you are selecting a group, how did you

- (a) Knew group member(s) prior to tak
- (b) Met group member(s) during first t
- (c) Found group member(s) through c
- (d) Found group member(s) through C
- (e) Found group member(s) through o
- (f) Other

Select all possible options that apply.
Creating a group assessment in PL

T1-GA0: Group Activity 0 (not for credit): get started 👤

Topic1 –GA0: Group Activity 0 (not for credit): get started for CS 357

This is a group assessment.

<table>
<thead>
<tr>
<th>Group name</th>
<th>Join code</th>
</tr>
</thead>
<tbody>
<tr>
<td>e.g. teamOne</td>
<td>abcd-1234</td>
</tr>
</tbody>
</table>

Group names can only contain letters and numbers

Create new group

Join group
Practice Group Activity