Singular Value Decomposition

(applications)
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1) Determining the rank of a matrix

Suppose AisamXn rectangular matrix where m > n:
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Rank of a matrix

For general rectangular matrix A with dimensions mXn, the reduced SVD is:
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Rank of a matrix

* The rank of A equals the number of non-zero singular values which is
the same as the number of non-zero diagonal elements in X.

* Rounding errors may lead to small but non-zero singular values in a
rank deficient matrix, hence the rank of a matrix determined by the
number of non-zero singular values is sometimes called “effective rank”.

* The right-singular vectors (columns of V') corresponding to vanishing
singular values span the null space of A.

* The left-singular vectors (columns of U) corresponding to the non-zero

singular values of A span the range of A.




2) Pseudo-inverse

* Problem:if A is rank-deficient, X is not be invertible
* How to fix it: Define the Pseudo Inverse

e Pseudo-Inverse of a diagonal matrix:

(1,
(Z+)i=<;i’ lfO'l'-'/=0
\0, if0'i=0

e Pseudo-Inverse of a matrix A:

At =yxtuT
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3) Matrix norms

The Euclidean norm of an orthogonal matrix is equal to 1

|U|l, = max ||[Ux|l, = max /(Ux)T(Ux) = max +xTx = max ||x||, = 1
||xl[>=1 l|lx[[2=1 lx||,=1 llxll,=1

The Euclidean norm of a matrix is given by the largest singular value

|All, = max ||Ax||, = max |UZ VT
Ixll;=1

— T
Ixlls=1 tll, = max |2 V7],

2

_ Tl —
= W B V], = max, 12 71l

Where we used the fact that ||U||, = 1, ||[V]|, = 1. Since X is diagonal we get:

”A”2 = max(al-) = Omax Omax is the largest singular value
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4) Norm for the inverse of a matrix

The Euclidean norm of the inverse of a square-matrix is given by:
Assume here A4 is full rank, so that A1 exists

14~ = max [[(UZ V)™ x]],

Ixll2=

-1 — -19T
147, = max [[VE-1UTx]],

Since ||U||l, = 1, ||[V]], = 1 and X is diagonal then

1
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Omin is the smallest singular value
Omin
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5) Norm of the pseudo-inverse matrix

The norm of the pseudo-inverse of a m X n matrix is:

At =yztuT

1
AT |[;= —

Oy

where 0} is the smallest non-zero singular value. This is valid for any matrix, regardless
of the shape or rank.

Note that for a full rank square matrix, AT |5 is the same as ||A_1 Il-.

Zero matrix: If 4 is a zero matrix, then A is also the zero matrix, and ||A7|| 2= 0
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©6) Condition number of a matrix

The condition number of a matrix is given by

cond,(4) = ||A||, ||AT]|,

If the matrix is full rank: rank(4) = min(m, n)

o
cond,(A) = —=
Omin

where Oy gy is the largest singular value and Gy, is the smallest singular value

If the matrix is rank deficient: rank(4) < min(m, n)

cond,(A) = o




/) Low-Rank Approximation

We will again use the SVD to write the matrix A as a sum of outer

products (of left and right singular vectors) — here for m > n without

loss of generality:
vl
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/) Low-Rank Approximation (cont.)

The best rank-K approximation for a mXn matrix A, (where
k < min(m, n)) is the one that minimizes the following problem:

min |[A — Al
Ay
such that rank(4,) < k.

When using the induced 2-norm, the best rank-k approximation is given by:
A, = oyu vl + ouyvi + -+ o uR Vi
0-120-220-3...20

Note that rank(A) = nand rank(A;) = k and the norm of the

difference between the matrix and its approximation is

-




Example: Image compression
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8) Using SVD to solve square system of
linear equations

If A is a nXn square matrix and we want to solve A X = b, we can use
the SVD for A such that




