Singular Value Decomposition

(matrix factorization)
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Singular Value Decomposition

The SVD is a factorization of a M XN matrix into
A=UzVT

where U is a mXm orthogonal matrix, VT isanxn orthogonal matrix and X

isamXn diagonal matrix.
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For a square matrix (m = n):
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Reduced SVD

What happens when A is not a square matrix?
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Reduced SVD
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Let’s take a look at the product 2T¥ where X has the singular values of a A,
a M XN matrix.
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Assume A with the singular value decomposition A=UZXVT, Let’s take a
look at the cigenpairs corresponding to ATA:
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In a similar way,
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How can we compute an SVD of a matrix A ?

Evaluate the 1 eigenvectors V; and eigenvalues A; of ATA

Make a matrix V from the normalized vectors V;. The columns are called
«__ - . b))
right singular vectors”.

= o)

Make a diagonal matrix from the square roots of the eigenvalues.
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Find U: A=UZXV!I = UX = AV.The columns are called the “left
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smgular vectors’ .
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Singular values are always non-negative

* A matrix is positive definite if xTBx > 0forVx =0
* A matrix is positive semi-definite if xTBx > 0forVx #0
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4 ™
Cost of SVD

The cost of an SVD is proportional to M N% + n3where the constant of

proportionality constant ranging from 4 to 10 (or more) depending on the algorithm.
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Coyp = a(mn? +n3) = 0(n3)

Catmat = = O(ng)
CLU = 2n3/3 = 0(713)
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SVD summary:

 The SVD is a factorization of a mXn matrix into A = U X VT where U is a mXm
orthogonal matrix, VT isanxn orthogonal matrix and X is a mXn diagonal matrix.

* Inreduced form: A = URZRVRT, where Up is a mXk matrix, X is a k Xk matrix,
and Vg is a nXk matrix, and kK = min(m, n).

* The columns of V are the eigenvectors of the matrix ATA, denoted the right singular

vectors.

* The columns of U are the eigenvectors of the matrix AAT, denoted the left singular

vectors.

* The diagonal entries of 22 are the eigenvalues of ATA. o i = +/A; are called the singular

values.

* The singular values are always non-negative (since ATAisa positive semi-definite matrix,

the eigenvalues are always 4 = 0)




