
Solving Linear System of Equations



The “Undo” button for Linear Operations
Matrix-vector multiplication: given the data 𝒙 and the operator 𝑨, 
we can find 𝒚 such that 

𝒚 = 𝑨 𝒙

What if we know 𝒚 but not 𝒙? How can we “undo” the 
transformation?

𝒙 𝒚
𝑨

transformation

𝒚 𝒙
𝑨!𝟏

?
Solve 𝑨 𝒙 = 𝒚 for 𝒙



Image Blurring Example

• Image is stored as a 2D array of real numbers between 0 and 1 
(0 represents a white pixel, 1 represents a black pixel)

• 𝒙𝒎𝒂𝒕 has 40 rows of pixels and 100 columns of pixels
• Flatten the 2D array as a 1D array
• 𝒙 contains the 1D data with dimension 4000,
• Apply blurring operation to data 𝒙, i.e.

𝒃 = 𝑨 𝒙
where 𝑨 is the blur operator and 𝒃 is the blurred image



Blur operator

𝒃 = 𝑨 𝒙

"original” 
image 

(4000,)

blurred 
image 

(4000,)

Blur operator 
(4000,4000)

Blur operator

𝒙

𝒃

𝑨



”Undo” Blur to recover original image

Solve 
𝑨 𝒙 = 𝒃

for 𝒙

Assumptions:
1. we know the blur 

operator 𝑨
2. the data set 𝒃 does not 

have any noise (“clean 
data”  

What happens if we add 
some noise to 𝒃?

𝒙

𝒃



”Undo” Blur to recover original image

Solve 𝑨 𝒙 = 𝒚 for 𝒙

𝒚 + 𝑎 ∗ 10!" (𝑎 ∈ 0,1 )

How much noise can we add and still be able to recover meaningful information from the original 
image? At which point this inverse transformation fails? 

We will talk about sensitivity of the “undo” operation later.

𝒚 + 𝑎 ∗ 10!# (𝑎 ∈ 0,1 )



Linear System of Equations

We can start with an “easier” system of equations…

How do we actually solve 𝑨 𝒙 = 𝒃 ?

Let’s consider triangular matrices (lower and upper):

𝐿!! 0
𝐿"! 𝐿""

… 0
… 0

⋮ ⋮
𝐿#! 𝐿#"

⋱ ⋮
… 𝐿##

𝑥!
𝑥"
⋮
𝑥#

=

𝑏
𝑏"
⋮
𝑏#

𝑈!! 𝑈!"
0 𝑈""

… 𝑈!#
… 𝑈"#

⋮ ⋮
0 0

⋱ ⋮
… 𝑈##

𝑥!
𝑥"
⋮
𝑥#

=

𝑏
𝑏"
⋮
𝑏#



2 0
3 2

0 0
0 0

1 2
1 3

6 0
4 2

𝑥!
𝑥"
𝑥#
𝑥$

=
2
2
6
4

Example: Forward-substitution for lower 
triangular systems

2 𝑥$ = 2 → 𝑥$= 1

3 𝑥$ + 2 𝑥% = 2 → 𝑥%=
2 − 3
2 = −0.5

1 𝑥$ + 2 𝑥% + 6 𝑥& = 6 → 𝑥&=
6 − 1 + 1

6 = 1.0

1 𝑥$ + 3 𝑥% + 4 𝑥& + 2 𝑥# = 4 → 𝑥&=
4 − 1 + 1.5 − 4

2 = 0.25 𝑥!
𝑥"
𝑥#
𝑥$

=
1

−0.5
1.0
0.25



Example: Backward-substitution for upper 
triangular systems
2 8
0 4

4 2
4 3

0 0
0 0

6 2
0 2

𝑥!
𝑥"
𝑥$
𝑥%

=
2
4
4
1

𝑥# =
1
2

𝑥& =
4 − 212
6

=
1
2

𝑥% =
4 − 412 − 3

1
2

4
=
1/2
4

=
1
8

𝑥$ =
2 − 818 − 4

1
2 − 2

1
2

2 =
−2
2 = −1



LU Factorization
How do we solve 𝑨 𝒙 = 𝒃 when 𝑨 is a non-triangular matrix?

We can perform LU factorization: given a 𝑛×𝑛 matrix 𝑨, 
obtain lower triangular matrix 𝑳 and upper triangular matrix 
𝑼 such that

where we set the diagonal entries of 𝑳 to be equal to 1.

𝑨 = 𝑳𝑼

1 0
𝐿"! 1

… 0
… 0

⋮ ⋮
𝐿#! 𝐿#"

⋱ ⋮
… 1

𝑈!! 𝑈!"
0 𝑈""

… 𝑈!#
… 𝑈"#

⋮ ⋮
0 0

⋱ ⋮
… 𝑈##

=

𝐴!! 𝐴!"
𝐴"! 𝐴""

… 𝐴!#
… 𝐴"#

⋮ ⋮
𝐴#! 𝐴#"

⋱ ⋮
… 𝐴##



LU Factorization
1 0
𝐿"! 1

… 0
… 0

⋮ ⋮
𝐿#! 𝐿#"

⋱ ⋮
… 1

𝑈!! 𝑈!"
0 𝑈""

… 𝑈!#
… 𝑈"#

⋮ ⋮
0 0

⋱ ⋮
… 𝑈##

=

𝐴!! 𝐴!"
𝐴"! 𝐴""

… 𝐴!#
… 𝐴"#

⋮ ⋮
𝐴#! 𝐴#"

⋱ ⋮
… 𝐴##

Assuming the LU factorization is know, we can solve the general system



LU Factorization (with pivoting)

𝑷𝑳𝑼 𝒙 = 𝒃

𝑳 𝒚 = 𝑷𝑻𝒃Forward-substitution

𝑼 𝒙 = 𝒚

(Solve for 𝒚)

Backward-substitution (Solve for 𝒙)

𝑨 = 𝑷𝑳𝑼Factorize:

𝒚



Example

𝑼 =
2 8
0 −2

4 1
1 2.5

0 0
0 0

3 −1
0 0.75

𝑳 =
1 0
0.5 1

0 0
0 0

0.5 1
0.5 0.5

1 0
0.5 1

Assume the  𝑨 = 𝑳𝑼 factorization is known, yielding:

Determine the solution 𝒙 that satisfies 𝑨𝒙 = 𝒃, when 𝒃 =
2
2
1
4

First, solve the lower-triangular 
system 𝑳 𝒚 = 𝒃 for the variable 𝒚

𝑳 𝑼𝒙 = 𝒃

𝒚

Then, solve the upper-triangular 
system 𝑼 𝒙 = 𝒚 for the variable 𝒙

1 0
0.5 1

0 0
0 0

0.5 1
0.5 0.5

1 0
0.5 1

𝒚 =
2
2
1
4

2 8
0 −2

4 1
1 2.5

0 0
0 0

3 −1
0 0.75

𝒙 =
2
1
−1
3



Methods to solve linear system of 
equations

𝑨 𝒙 = 𝒃

• LU

• Cholesky

• Sparse



LU Factorization - Algorithm



2x2 LU Factorization (simple example)
𝐴!! 𝐴!"
𝐴"! 𝐴""

= 1 0
𝐿"! 1

𝑈!! 𝑈!"
0 𝑈""

𝐴!! 𝐴!"
𝐴"! 𝐴""

= 𝑈!! 𝑈!"
𝐿"!𝑈!! 𝐿"!𝑈!" + 𝑈""



LU Factorization

𝐴!! 𝐴!"
𝐴"! 𝐴""

… 𝐴!#
… 𝐴"#

⋮ ⋮
𝐴#! 𝐴#"

⋱ ⋮
… 𝐴##

=
𝑎!! 𝒂!"
𝒂"! 𝑨"" = 1 𝟎

𝒍"! 𝑳""
𝑢!! 𝒖!"
𝟎 𝑼""

𝑎$$ 𝒂$%

𝒂%$
𝑨%%

𝑎$$: scalar
𝒂$%: row vector (1×(𝑛 − 1))
𝒂%$: column vector (𝑛 − 1)×1
𝑨%%: matrix (𝑛 − 1)×(𝑛 − 1)

𝑎!! 𝒂!"
𝒂"! 𝑨"" =

𝑢!! 𝒖!"
𝑢!! 𝒍"! 𝒍"!𝒖!" + 𝑳""𝑼""



LU Factorization

𝐴!! 𝐴!"
𝐴"! 𝐴""

… 𝐴!#
… 𝐴"#

⋮ ⋮
𝐴#! 𝐴#"

⋱ ⋮
… 𝐴##

=
𝑎!! 𝒂!"
𝒂"! 𝑨"" = 1 𝟎

𝒍"! 𝑳""
𝑢!! 𝒖!"
𝟎 𝑼""

𝑎$$ 𝒂$%

𝒂%$
𝑨%%

𝑎$$: scalar
𝒂$%: row vector (1×(𝑛 − 1))
𝒂%$: column vector (𝑛 − 1)×1
𝑨%%: matrix (𝑛 − 1)×(𝑛 − 1)

𝑎!! 𝒂!"
𝒂"! 𝑨"" =

𝑢!! 𝒖!"
𝑢!! 𝒍"! 𝒍"!𝒖!" + 𝑳""𝑼""

1) First row of 𝑼 is 
the first row of 𝑨

2) 𝒍<= =
=
%!!
𝒂<=

3) 𝑴 = 𝑳""𝑼"" = 𝑨"" − 𝒍"!𝒖!"
Need another factorization!

Known!

First column of 𝑳 is the first 
column of 𝑨/ 𝑢==



Example

𝑴 =
2 8
1 2

4 1
3 3

1 2
1 3

6 2
4 2

𝑼 =
2 8
0 0

4 1
0 0

0 0
0 0

0 0
0 0

𝑳 =
1 0
0.5 0

0 0
0 0

0.5 0
0.5 0

0 0
0 0

1) First row of 𝑼 is the first row of 𝑨
2) First column of 𝑳 is the first column of 𝑨/ 𝑢==
3) 𝑳""𝑼"" = 𝑨"" − 𝒍"!𝒖!"

𝑳%%𝑼%% = 𝑨%% − 𝒍%$𝒖$% =
2 3 3
2
3

6 2
4 2

−
4 2 0.5
4
4

2 0.5
2 0.5

𝑴 =
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

4 1.5
2 1.5



𝑴 =
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

4 1.5
2 1.5

𝑼 =
2 8
0 −2

4 1
1 2.5

0 0
0 0

0 0
0 0

𝑳 =
1 0
0.5 1

0 0
0 0

0.5 1
0.5 0.5

0 0
0 0

𝑳%%𝑼%% = 𝑨%% − 𝒍%$𝒖$% =
4 1.5
2 1.5 − 1 2.5

0.5 1.25

𝑴 =
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

3 −1
1.5 0.25



𝑴 =
2 8
1 −2

4 1
1 2.5

1 −2
1 −1

3 −1
1.5 0.25

𝑼 =
2 8
0 −2

4 1
1 2.5

0 0
0 0

3 −1
0 0

𝑳 =
1 0
0.5 1

0 0
0 0

0.5 1
0.5 0.5

1 0
0.5 0

𝑳%%𝑼%% = 𝑨%% − 𝒍%$𝒖$% = 0.25 − −0.5 = 0.75

𝑼 =
2 8
0 −2

4 1
1 2.5

0 0
0 0

3 −1
0 0.75

𝑳 =
1 0
0.5 1

0 0
0 0

0.5 1
0.5 0.5

1 0
0.5 1



LU Factorization

𝐴!! 𝐴!"
𝐴"! 𝐴""

… 𝐴!#
… 𝐴"#

⋮ ⋮
𝐴#! 𝐴#"

⋱ ⋮
… 𝐴##

=
𝑎!! 𝒂!"
𝒂"! 𝑨"" = 1 𝟎

𝒍"! 𝑳""
𝑢!! 𝒖!"
𝟎 𝑼""

𝑎$$ 𝒂$%

𝒂%$
𝑨%%

𝑎$$: scalar
𝒂$%: row vector (1×(𝑛 − 1))
𝒂%$: column vector (𝑛 − 1)×1
𝑨%%: matrix (𝑛 − 1)×(𝑛 − 1)

𝑎!! 𝒂!"
𝒂"! 𝑨"" =

𝑢!! 𝒖!"
𝑢!! 𝒍"! 𝒍"!𝒖!" + 𝑳""𝑼""

1) First row of 𝑼 is 
the first row of 𝑨

2) 𝒍<= =
=
%!!
𝒂<=

3) 𝑴 = 𝑳""𝑼"" = 𝑨"" − 𝒍"!𝒖!"
Need another factorization!

Known!

First column of 𝑳 is the first 
column of 𝑨/ 𝑢==



Cost of solving linear system of equations



Cost of solving triangular systems

𝑥&=
𝑏& − ∑'(&)!* 𝑈&'𝑥'

𝑈&&
, 𝑖 = 𝑛 − 1, 𝑛 − 2,… , 1𝑥* = 𝑏*/𝑈**



Cost of solving triangular systems

𝑥&=
𝑏& − ∑'(&)!* 𝑈&'𝑥'

𝑈&&
, 𝑖 = 𝑛 − 1, 𝑛 − 2,… , 1𝑥* = 𝑏*/𝑈**

𝑛 divisions
𝑛 𝑛 − 1 /2 subtractions/additions
𝑛 𝑛 − 1 /2 multiplications

Computational complexity is 𝑂(𝑛")

𝑛 divisions
𝑛 𝑛 − 1 /2 subtractions/additions
𝑛 𝑛 − 1 /2 multiplications

Computational complexity is 𝑂(𝑛")

𝑥&=
𝑏& − ∑'(!&+! 𝐿&'𝑥'

𝐿&&
, 𝑖 = 2,3, … , 𝑛𝑥! = 𝑏!/𝐿!!



Cost of LU factorization
&
"#$

%

𝑖 =
1
2
𝑚 𝑚 + 1

&
"#$

%

𝑖& =
1
6𝑚 𝑚 + 1 2𝑚 + 1

Side note:



Solving linear systems
In general, we can solve a linear system of equations following the steps:

1) Factorize the matrix 𝑨 : 𝑨 = 𝑳𝑼 (complexity 𝑂(𝑛C))

2) Solve 𝑳 𝒚 = 𝒃 (complexity 𝑂(𝑛<))

3) Solve 𝑼 𝒙 = 𝒚 (complexity 𝑂(𝑛<))

But why should we decouple the factorization from the actual solve?
(Remember from Linear Algebra, Gaussian Elimination does not 
decouple these two steps…)



Example
Let’s assume that when solving the system of equations 𝑲𝑼 = 𝑭, we observe the 
following:

• When the matrix 𝑲 has dimensions (100,100), computing the LU factorization takes 
about 1 second and each solve (forward + backward substitution) takes about 0.01 
seconds. 

Estimate the total time it will take to find the response 𝑼 corresponding to 10 different 
vectors 𝑭 when the matrix 𝑲 has dimensions (1000,1000)?

𝐴) ~10 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝐵) ~10" 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝐶) ~10# 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝐷) ~10$ 𝑠𝑒𝑐𝑜𝑛𝑑𝑠
𝐸) ~10, 𝑠𝑒𝑐𝑜𝑛𝑑𝑠



LU Factorization with pivoting



What can go wrong with the previous 
algorithm for LU factorization?

𝑴 =
2 8
1 𝟒

4 1
3 3

1 2
1 3

6 2
4 2

𝑼 =
2 8
0 0

4 1
0 0

0 0
0 0

0 0
0 0

𝑳 =
1 0
0.5 0

0 0
0 0

0.5 0
0.5 0

0 0
0 0

𝑴− 𝒍"!𝒖!" =
2 8
1 𝟎

4 1
1 2.5

1 −2
1 −1

4 1.5
2 1.5

𝒍"!𝒖!" =
4 2 0.5
4 2 0.5
4 2 0.5

The next update for the lower triangular matrix will result in a 
division by zero! LU factorization fails.

What can we do to get something like an LU factorization?



Pivoting
Approach:
1. Swap rows if there is a zero entry in the diagonal
2. Even better idea: Find the largest entry (by absolute value) and 

swap it to the top row.

The entry we divide by is called the pivot.

Swapping rows to get a bigger pivot is called (partial) pivoting.

𝑎!! 𝒂!"
𝒂"! 𝑨"" =

𝑢!! 𝒖!"
𝑢!! 𝒍"! 𝒍"!𝒖!" + 𝑳""𝑼""

Find the largest entry (in magnitude)


