Singular Value Decomposition

(applications)
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1) Determining the rank of a matrix

Suppose AisamXn rectangular matrix where m > n: V'\' lL v
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Rank of a matrix
For general rectangular matrix A with dimensions mXn, the reduced SVD is:
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Rank of a matrix

* The rank of A equals the number of non-zero singular values which is
the same as the number of non-zero diagonal elements in X.

* Rounding errors may lead to small but non-zero singular values in a
rank deficient matrix, hence the rank of a matrix determined by the
number of non-zero singular values is sometimes called “effective rank”.

* The right-singular vectors (columns of V') corresponding to vanishing
singular values span the null space of A.

* The left-singular vectors (columns of U) corresponding to the non-zero

singular values of A span the range of A.




2) Pseudo-inverse

* Problem: if A is rank-deficient, X is not be invertible

* How to fix it: Define the Pseudo Inverse
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* Pseudo-Inverse of a dlagonal matrix: A oFP"
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3) Matrix norms ., yox - 730y -
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he Euclidean norm of an orthggonal matrix is equaito 1
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The Euclidean norm of a matrix is given by the largest singular value
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4) Norm for the inverse of a matrix
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The Euclidean norm of the inverse of a square-matrix is given by:

Assume heife A is full rank,

1472 = max [l 2V ],

that A~1 exists
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Since ||U||l, = 1, ||[V]], = 1 and X is diagonal then
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5) Norm of the pseudo-inverse matrix

The norm of the pseudo-inverse of a‘m Xn lnatrix is: ‘
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where 0y is the smallest non-zero singular value. This is valid for any matrix, regardless
of the shape or rank.
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Zero matrix: If 4 is a zero matrix, then A is also the zero matrix, and ||A7|| 2= 0
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Note that for a full rank square matrix, |A* ||, is the same as Vs Il-.
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©6) Condition number of a matrix

The condition number of a matrix is given by /

cond,(4) = ||A||, ||AT]|,

If the matrix is full rank: rank (A) = min(m, Tl)

YT conds(A) %} \A\\ WA,

where Opqy is the largest singular value and Gy iy, is the smallest singular value

If the matrix is rank deficient: rank (A)\< min(m, n)
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/) Low-Rank Approximation

We will again use the SVD to write the matrix A as a sum of outer
products (of left and right singular vectors) — here for m > n without

loss of generality:
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/) Low-Rank Approximation (cont.)
The best rank-K_approximation fora mXn matrix 4, (where

k < min(gn, n)) is the one that minimizes the following problem:
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¢ induced 2-norm, the best rank-K approximation is given by
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8) Using SVD to solve square system of
linear equations

M A=0O3V'
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