Solving Linear Least Squares with

SVD
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What we have learned so far...

A is a M XN matrix where m > n

(more points to fit than coefficient to be determined)
Normal Equations: ATA x = A" b

* The solution A X = b is unique if and only if rank (A) =n
(A is full column rank)

* rank(A) =n - columns of A are linearly independent = 1 non-zero
singular values = AT A has only positive eigenvalues - ATAisa symmetric

and positive definite matrix — AT A is invertible
x=(ATA) 14T b

o Ifrank(A) < n, then A is rank-deficient, and solution of linear least squares

problem is not unique.




4 ™
Condition number for Normal Equations

Finding the least square solution of A X = b (where A is full rank matrix)

using the Normal Equations

ATAx=ATb

has some advantages, since we are solving a square system of linear equations
with a symmetric matrix (and hence it is possible to use decompositions such

as Cholesky Factorization)

However, the normal equations tend to worsen the conditioning of the

matrix.

‘cond(ATA) = (cond(A))? «

How can we solve the least square problem without squaring the
condition of the matrix?
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SVD to solve linear least squares

problems

AisamXn rectangular matrix where m > n, and hence the SVD

decomposition is given by:

oVl
A=<u1 um> “On I
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We want to find the least square solution of A X = b, where A = U X vt

T —_

or better expressed in reduced form: A = Ugp Xp v
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Recall Reduced SVD

m>n
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Shapes of the Reduced SVD

Suppose you compute a reduced SVD A = UZVT of a 10 X 14 matrix A. What will the shapes of U, =, and V be?
Hint: Remember the transpose on V!

The shape of U will be X
The shape of X will be X
The shape of V will be X
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SVD to solve linear least squares

problems
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Example:

Consider solving the least squares problem A X = b, where the singular value decomposition of
the matrix A = U X VT x is:
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Determine ||b — A x||2
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Example

Suppose you have A = U X VT x calculated. What is the cost of solving

min||b — A4 x||5 ?
X

A) O(n)
B) 0(n?%)
C) O(mn)
D) 0(m)
E) 0(m?)






