## Least Squares and Data Fitting

## Data fitting

How do we best fit a set of data points?


## Linear Least Squares

## 1) Fitting with a line



Given $m$ data points $\left\{\left\{t_{1}, y_{1}\right\}, \ldots,\left\{t_{m}, y_{m}\right\}\right\}$, we want to find the function

$$
\left.y=x_{0}+x_{1}\right) t
$$

that best fit the data (or better, we want to find the coefficients $x_{0}, x_{1}$ ).

Thinking geometrically, we can think "what is the line that most nearly passes through all the points?"


Given $m$ data points $\left\{\left\{t_{1}, y_{1}\right\}, \ldots,\left\{t_{m}, y_{m}\right\}\right\}$, we want to find $x_{o}$ and $x_{1}$ such that
$(t, y$,

$$
y_{i}=x_{0}+x_{1} t_{i}
$$

$\forall i \in[1, m]$

$$
\left.\begin{array}{l}
y_{1}=x_{0}+x_{1} t_{1} \\
y_{2}=x_{0}+x_{1} t_{2} \\
y_{3}=x_{0}+x_{1} t_{3} \\
\vdots \\
y_{m}=x_{0}+x_{1} t_{m}
\end{array}\right\}\left[\begin{array}{l}
{\left[\begin{array}{l}
y_{1} \\
y_{2} \\
1 \\
\vdots \\
\vdots \\
y_{m}
\end{array}\right]=\left[\begin{array}{cc}
1 & t_{1} \\
1 & t_{2} \\
\vdots & \\
\vdots & t_{m}
\end{array}\right]\left[\begin{array}{c}
x_{0} \\
x_{1} \\
x_{n} \\
n \times 1 \\
A m \times n
\end{array}\right]}
\end{array}\right.
$$

$\underset{\sim}{b} m \times 1 \quad \underset{\sim}{A} m \times n \quad \underset{\sim}{b}=\underset{\sim}{A} \underset{\sim}{x}$
overdetermined ! min

$$
\underset{\text { given }}{\underset{\sim}{b}}=\stackrel{A}{\underset{\sim}{\sim}} \underset{\text { given }^{x}}{ }
$$

Given $m$ data points $\left\{\left\{t_{1}, y_{1}\right\}, \ldots,\left\{t_{m}, y_{m}\right\}\right\}$, we want to find $x_{o}$ and $x_{1}$ such that

$$
y_{i}=x_{o}+x_{1} t_{i} \quad \forall i \in[1, m]
$$

or in matrix form:
$\left[\begin{array}{cc}1 & t_{1} \\ \vdots & \vdots \\ 1 & t_{m}\end{array}\right]\left[\begin{array}{l}x_{o} \\ x_{1}\end{array}\right]=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{m}\end{array}\right] \quad \boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$
$m \times n \quad n \times 1 \quad m \times 1$

Note that this system of linear equations has more equations than unknowns OVERDETERMINED SYSTEMS

We want to find the appropriate linear combination of the columns of $\boldsymbol{A}$ that makes up the vector $\boldsymbol{b}$.

If a solution exists that satisfies $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ then $\boldsymbol{b} \in \operatorname{range}(\boldsymbol{A})$


## Linear Least Squares

- In most cases, $\boldsymbol{b} \notin \operatorname{range}(\boldsymbol{A})$ and $\boldsymbol{A} \boldsymbol{x}=\boldsymbol{b}$ does not have an exact solution!

we want to find $\underset{\sim}{x}$ sit $y=A x$ better approximates $\underset{\sim}{b}$
- Therefore, an overdetermined system is better expressed as
$\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$


## Linear Least Squares

- Least Squares: find the solution $\left[\boldsymbol{x}\right.$ that minimizes ${ }^{2}$ the residual

$\underset{\sim}{r}$ is a vector
$\min \|r\|$
- Let's define the function $\phi$ as the square of the 2 -norm of the residual

$$
\searrow_{\phi(x)}=\| b-\left.A x\right|_{2} ^{2}
$$

## Linear Least Squares

- Least Squares: find the solution $\boldsymbol{x}$ that minimizes the residual

$$
r=b-A(x)
$$

- Let's define the function $\phi$ as the square of the 2 -norm of the residual

$$
\phi(\boldsymbol{x})=\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}
$$

- Then the least squares problem bes $\min _{x} \phi(\boldsymbol{x})$
- Suppose $\phi: \mathcal{R}^{m} \rightarrow \mathcal{R}$ is a smooth function, then $\phi(\boldsymbol{x})$ reaches a (local) maximum or minimum at a point $\boldsymbol{x}^{*} \in \mathcal{R}^{m}$ only if

$$
\nabla \phi\left(\boldsymbol{x}^{*}\right)=0
$$



How to find the minimizer?
To minimize the 2 -norm of the residual vector

$$
\begin{aligned}
& \left.\min _{x} \frac{1(x)=\|\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x}\|_{2}^{2}}{A^{\top}(b)}=\underline{(\boldsymbol{b}-\boldsymbol{A} x}\right)^{T} \underline{(\boldsymbol{b}-\boldsymbol{A} \boldsymbol{x})} \\
& \nabla \phi=-A^{\top}(b-A x)+\left(b_{\bar{\pi}} A x\right)^{\top}(-A)
\end{aligned}
$$


$A^{\top} A$ has $n$ eigenvalues $>0$
$y^{\top} A^{\top} A y>0$ for any $y \neq 0 \Rightarrow \begin{aligned} & A^{\top} A \text { is positive def. } \\ & \text { symmetric }\end{aligned}$
\& symmetric
$x=\left(A^{\top} A\right)^{-1} A^{\top} b \Rightarrow$ unique

Linear Least Squares (another approach)

- Find $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x}$ which is closest to the vector $\boldsymbol{b}$
- What is the vector $\boldsymbol{y}=\boldsymbol{A} \boldsymbol{x} \in \operatorname{range}(\boldsymbol{A})$ that is closest to vector $\boldsymbol{y}$ in the Euclidean norm?


$$
\begin{aligned}
& A^{\top} r=0 \\
& A^{\top}(b-A x)=0 \\
& A^{\top} b-A^{\top} A x=0 \\
& A^{\top} A x=A^{\top} b
\end{aligned}
$$

projection of $b$ in the column space of A
Find $r$ orthogonal to ALC columns of $A$.

$$
\Leftrightarrow A^{\top} r=0
$$

## Summary:

- $\boldsymbol{A}$ is $m$ matrix, where $m>n$.
- $m$ is the number of data pair points. $n$ is the number of parameters of the "best fit" function.
- Linear Least Squares problem $\boldsymbol{A} \boldsymbol{x} \cong \boldsymbol{b}$ always has solution.
- The Linear Least Squares solution $\boldsymbol{X}$ minimizes the square of the 2 -norm of the residual:

- One method to solve the minimization problem is to solve thy system of Normal Equations

- Let's see some examples and discuss the limitations of this method.


## Example:

## $y=x_{0}+x_{0} t$



ti

## Data fitting - not always a line fit!

- Does not need to be a line! For example, here we are fitting the data using a quadratic curve.


Linear Least Squares: The problem is linear in its coefficients!

## Another example

We want to find the coefficients of the quadratic function that best fits the data points:


We would not want our "fit" curve to pass through the data points exactly as we are looking to model the general trend and not capture the noise.

Data fitting

$$
\begin{aligned}
& y_{1}=x_{0}+x_{1} t_{1}+x_{2} t_{1}^{2} \\
& y_{2}=x_{0}+x_{1} t_{2}+x_{2} t_{2}^{2} \\
& y_{3}=x_{0}+x_{1} t_{3}+x_{2} t_{3}^{2}
\end{aligned}
$$



## Data fitting

$\left[\begin{array}{ccc}1 & t_{1} & t_{1}^{2} \\ \vdots & \vdots & \vdots \\ 1 & t_{m} & t_{m}^{2}\end{array}\right]\left[\begin{array}{l}x_{0} \\ x_{0} \\ x_{2}\end{array}\right]=\left[\begin{array}{c}y_{1} \\ \vdots \\ y_{m}\end{array}\right]$

Which function is not suitable for linear least squares?
A) $y=a+b x+c x^{2}+d x^{3}$

$$
\begin{aligned}
& y=x_{0}+x_{1} t \\
& y=x_{0}+x_{1} t+x_{2} t^{2}
\end{aligned}
$$

B) $y=x\left(a+b x+c x^{2}+d x^{3}\right)$
C) $y=a \sin (x)+b / \cos (x)$

$$
\rightarrow A x=b
$$

$$
\left[\begin{array}{l}
y_{1}^{\downarrow} \\
1 \\
1 \\
1 \\
y_{m}
\end{array}\right]=\left[\begin{array}{l}
\end{array}\right]\left[\begin{array}{l}
a \\
b
\end{array}\right]
$$

$$
\begin{aligned}
& \text { E) } y=a e^{-2 x}+b e^{2 x} \\
& {\left[\begin{array}{c}
y_{1} \\
y_{2} \\
\vdots \\
\vdots \\
y_{m}
\end{array}\right]=\left[\begin{array}{cc}
e^{2 x_{1}} & e^{2 x_{1}} \\
e^{-x_{2}} & e^{2 x_{2}} \\
\vdots & 1 \\
\vdots & \vdots
\end{array}\right]}
\end{aligned}
$$



## Short questions

Given the data in the table below, which of the plots shows the line of best fit in terms of least squares?

| $x$ | 1 | 2 | 5 |
| :---: | :---: | :---: | :---: |
| $y$ | 2 | 18 | 12 |






## Short questions

Given the data in the table below, and the least squares model

$$
y=c_{1}+c_{2} \sin (t \pi)+c_{3} \sin (t \pi / 2)+c_{4} \sin (t \pi / 4)
$$

written in matrix form as

$$
A\left[\begin{array}{l}
c_{1} \\
c_{2} \\
c_{3} \\
c_{4}
\end{array}\right] \cong \mathbf{y}
$$

| $t_{i}$ | $y_{i}$ |
| :--- | :--- |
| 0.5 | 0.72 |
| 1.0 | 0.79 |
| 1.5 | 0.72 |
| 2.0 | 0.97 |
| 2.5 | 1.03 |
| 3.0 | 0.96 |
| 3.5 | 1.00 |

