Nonlinear Equations
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* Spring force:
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How can we solve these equations?
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How can we solve these equations?

* Drag force: 50 1

F=05C;pAv?=u,; v

Ca—

tg =0.5Ns/m

40 -

&

What is the Velocity when

F = 20N> /
m \ | Ll I L L L L
I — 0 2 3 3 l\ 8 10
v [m/s]
»
~

A 0 e6Sm]s

adNforce [N]

r
N
T

—
o

(=]

F:‘)A,U?‘ —S \)’z;f_' —_ M‘:iﬁ = ‘\T;GS“"lﬁ

- /




/F‘:’A \72 -%F..,NPJ)
\——

${o)=©

f) =g v*-F=0

tg = 05Ns/m

A 10 1

M

Find the root (zero) of the

nonlinear equation f (V)

f{v) [N]

Often called Root Finding
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Bisection method
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Convergence

An iterative method converges with rate 7 if:

. e
Illm % = C, 0<(C <o r = 1: linear convergence
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Linear convergence gains a constant number of accurate digits each step
(and C < 1 matters!)
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Convergence

An iterative method converges with rate 7 if:
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C, 0<(C <o

"1 = 1: linear convergence
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r > 1: superlinear convergence

( r = 2: quadratic convergencD

Linear convergence gains a constant number of accurate digits each step

(and C < 1 matters!)

Quadratic convergence doubles the number of accurate digits in each step

(however it only starts making sense once ||€|| is small (and C does not

\_ matter much) -
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* The bisection method does not estimate X, the approximation of the

desired root X. It instead finds an interval smaller than a given

8@3 tolerance that contains the root.
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Consider the nonlinear equation 2;‘_ S | - aJ
b\

f(x) =0.5x2% =2 v >‘906

(\\3 q\)

and solving f(x) =0 using the Bisection Method. For each of the initial

intervals below, how many iterations are required to ensure the root is

accurate within 27%? kS 82\ 43
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Bisection method
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Algorithm:

1. Take two points, @ and D, on each side of the root such that f(a) and f(b) have

opposite signs.

+b
2.Calculate the midpoint m = aT

3. Evaluate f (M) and use m to replace either @ or b, keeping the signs of the
Kendpoints opposite. /
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Bisection Method - summary

(d The function must be continuous with a root in the interval [a, b]

d Requires only one function evaluations for each iteration!

O The first iteration requires two function evaluations.

' Given the fhitial iNternal [a, b], the length of the interval after k

1terations\is —
2

J Has linear convergence
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Newton’s method

()
* Recall we want to solve f(x) =0 for f:R - R w“_ D'P"F
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gives a linear approximation for the nonlinear function f near xj.
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Example

Consider solving the nonlinear equation

X 2
Is = 2.0 " + x2 -%TKX)‘%*X 5=
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What is the result of applying one iteration of Newton’s method for solving

nonlinear equations with initial starting guess Xo = 0, i.e. what is X7
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Newton’s Method - summary

(J Must be started with initial guess close enough to root (convergence is

only local). Otherwise it may not converge at all.

[ Requires function and first derivative evaluation at each iteration (think

about two function evaluations)

u Typically has quadrag

(1 What can we do when the derivative evaluation is too costly (or
difficult to evaluate)?
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Secant method df = opproximakiou for £(x)

Also derived from Taylor expansion, but instead of using f "(xy), it

approximates the tangent with the secant line:

X1 = X — [ /L) — Xien = X
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Secant Method - summary

L Still local convergence

[ Requires only one function evaluation per iteration (only the first

iteration requires two function evaluations)
1 Needs two starting guesses

J Has slower convergence than Newton’s Method — superlinear
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1D methods for root finding:

Method  Update Convergence Cost
Bisection | Check signs of f(a) and Linear (r = 1and ¢ = 0.5) | One function evaluation per
f(b) iteration, no need to
compute derivatives
|b — al
tk = > k
Secant X1 =X+ h Superlinear (r = 1.618), One function evaluation per
local convergence properties, | iteration (two evaluations for
h=—f(x)/f (xi) convergence depends on the the initial guesses only), no
initial guess need to compute derivatives
Newton X1 =X+ h Quadratic (r = 2), local Two function evaluations per
convergence properties, iteration, requires first order
h=—f(x;)/dfa convergence depends on the derivatives
initial guess
f ) = f (xge—1)
dfa =
(e — Xk—1)






