
LU Factorization with pivoting
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1) We want to solve for x

2) But first we will
"

construct the problem
"
.

-
start with the true

solution

* I:]
-
set Ce lo

"

( for example )

- compute matrix- vector multiplication
to

find b = AX

3) Now we can perfotrm the solve Ax = b to find X

4) If " all goes well
"

,
X -Xe . Is it ?



What can go wrong with the previous 
algorithm for LU factorization?
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The next update for the lower triangular matrix will result in a 
division by zero! LU factorization fails.

What can we do to get something like an LU factorization?



Pivoting
Approach:
1. Swap rows if there is a zero entry in the diagonal
2. Even better idea: Find the largest entry (by absolute value) and 

swap it to the top row.

The entry we divide by is called the pivot.

Swapping rows to get a bigger pivot is called (partial) pivoting.
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Find the largest entry (in magnitude)

A -- LU
A -⑤LU



Sparse Systems



Sparse Matrices
Some type of matrices contain many zeros. 
Storing all those zero entries is wasteful!

How can we efficiently store large 
matrices without storing tons of zeros?

• Sparse matrices (vague definition): matrix with few non-zero entries.
• For practical purposes: an +×- matrix is sparse if it has . min +, -

non-zero entries.
• This means roughly a constant number of non-zero entries per row and 

column.
• Another definition: “matrices that allow special techniques to take advantage 

of the large number of zero elements” (J. Wilkinson)



Sparse Matrices: Goals

• Perform standard matrix computations economically, i.e., 
without storing the zeros of the matrix.

• For typical Finite Element and Finite Difference matrices, the number of 
non-zero entries is . -



Sparse Matrices: MP example



Sparse Matrices
EXAMPLE:

Number of operations required to add two square dense matrices:
! "!

Number of operations required to add two sparse matrices # and $:
! nnz # + nnz($)

where nnz + = number of non-zero elements of a matrix +

( nEn If n'En )
O-
--



Popular Storage Structures

=



Dense (DNS)

34ℎ678 = (:;<=, :?<@)

• Simple
• Row-wise
• Easy blocked formats
• Stores all the zeros

Row 0 Row 1 Row 2 Row 3

=

=--
-
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Coordinate Form (COO) 

• Simple
• Does not store the zero elements
• Not sorted
• row and col: array of integers
• data: array of doubles
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data = [1.9 - 5.2 O - 3 9-I 4.4 5.8 3.6 7.2 2.7]

Drow- [ O
O I 1 2 2 2 33]

Col =[ I 3 O 2 O 1 2 23]
( int data _- [ -5.2 9. I 3.6 2.7 . - - ]

row- 2 33 i
-

col =L 3 2 2
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data =[ 1.3 0.2 5 - I-5 3 0.3]
Col = [ 2 I O O 2 I ]
row -- [ 0 I 2 I 3 3]

6 floats t 6 integers
(6×64 t 12×32 >bits = 96 bytes



Compressed Sparse Row (CSR) 
format TI o- 2

in
.cm :3:#
int 3 - 2

s

data_- [ 1.9 - 5.2 4.4 5.8 36 7.2 27 ]

Col = [ I 3 O L 2 2 3 ]
rowptr = -4027,2
to!¥.ws?o7sEEInnz- rowsthrows
+ I )nnzrowTnnZr0w2



Compressed Sparse Row (CSR)

• Does not store the zero elements
• Fast arithmetic operations between sparse matrices, and fast matrix-

vector product
• col: contain the column indices (array of ""- integers)
• data: contain the non-zero elements (array of ""- doubles)
• rowptr: contain the row offset (array of " + 1 integers)


