
LU Factorization with pivoting

E: :S H:S
-
- -

A x b

1) We want to solve for x

2) But first we will
"

construct the problem
"
.

-
start with the true

solution

* I:]
-
set Ce lo

"

(for example)

- compute matrix- vector multiplication
to

find b = AX

3) Now we can perfotrm the solve Ax = b to find X

4) If " all goes well
"

,
X -Xe . Is it ?

What can go wrong with the previous
algorithm for LU factorization?

! =
2 8
1 &

4 1
3 3

1 2
1 3

6 2
4 2

* =
2 8
0 0

4 1
0 0

0 0
0 0

0 0
0 0

, =
1 0
0.5 0

0 0
0 0

0.5 0
0.5 0

0 0
0 0

!− 0!"1"! =
2 8
1 2

4 1
1 2.5

1 −2
1 −1

4 1.5
2 1.5

0!"1"! =
4 2 0.5
4 2 0.5
4 2 0.5

The next update for the lower triangular matrix will result in a
division by zero! LU factorization fails.

What can we do to get something like an LU factorization?

Pivoting
Approach:
1. Swap rows if there is a zero entry in the diagonal
2. Even better idea: Find the largest entry (by absolute value) and

swap it to the top row.

The entry we divide by is called the pivot.

Swapping rows to get a bigger pivot is called (partial) pivoting.

!!! "!"
""! #"" = %!! &!"

%!! '"! '"!&!" +)""*""

Find the largest entry (in magnitude)

A -- LU
A -⑤LU

Sparse Systems

Sparse Matrices
Some type of matrices contain many zeros.
Storing all those zero entries is wasteful!

How can we efficiently store large
matrices without storing tons of zeros?

• Sparse matrices (vague definition): matrix with few non-zero entries.
• For practical purposes: an +×- matrix is sparse if it has . min +, -

non-zero entries.
• This means roughly a constant number of non-zero entries per row and

column.
• Another definition: “matrices that allow special techniques to take advantage

of the large number of zero elements” (J. Wilkinson)

Sparse Matrices: Goals

• Perform standard matrix computations economically, i.e.,
without storing the zeros of the matrix.

• For typical Finite Element and Finite Difference matrices, the number of
non-zero entries is . -

Sparse Matrices: MP example

Sparse Matrices
EXAMPLE:

Number of operations required to add two square dense matrices:
! "!

Number of operations required to add two sparse matrices # and $:
! nnz # + nnz($)

where nnz + = number of non-zero elements of a matrix +

(nEn If n'En)
O-
--

Popular Storage Structures

=

Dense (DNS)

34ℎ678 = (:;<=, :?<@)

• Simple
• Row-wise
• Easy blocked formats
• Stores all the zeros

Row 0 Row 1 Row 2 Row 3

=

=--
-
-

Coordinate Form (COO)

• Simple
• Does not store the zero elements
• Not sorted
• row and col: array of integers
• data: array of doubles

0 I 2 3 N
O O

O L

(
¥

0023
data = [1.9 - 5.2 O - 3 9-I 4.4 5.8 3.6 7.2 2.7]

Drow- [O
O I 1 2 2 2 33]

Col =[I 3 O 2 O 1 2 23]
(int data _- [-5.2 9. I 3.6 2.7 . - -]

row- 2 33 i
-

col =L 3 2 2

O 1 2

00 NAZCA) - 6Y DD i

D 2

DD 3
4

-55 -

data =[1.3 0.2 5 - I-5 3 0.3]
Col = [2 I O O 2 I]
row -- [0 I 2 I 3 3]

6 floats t 6 integers
(6×64 t 12×32 >bits = 96 bytes

Compressed Sparse Row (CSR)
format TI o- 2

in
.cm :3:#
int 3 - 2

s

data_- [1.9 - 5.2 4.4 5.8 36 7.2 27]

Col = [I 3 O L 2 2 3]
rowptr = -4027,2
to!¥.ws?o7sEEInnz- rowsthrows
+ I)nnzrowTnnZr0w2

Compressed Sparse Row (CSR)

• Does not store the zero elements
• Fast arithmetic operations between sparse matrices, and fast matrix-

vector product
• col: contain the column indices (array of ""- integers)
• data: contain the non-zero elements (array of ""- doubles)
• rowptr: contain the row offset (array of " + 1 integers)

