Arrays: computing with many numbers

Some perspective

- We have so far (mostly) looked at what we can do with single numbers (and functions that return single numbers).
- Things can get much more interesting once we allow not just one, but many numbers together.
- It is natural to view an array of numbers as one object with its own rules.
- The simplest such set of rules is that of a **vector**.

Vectors

A vector is an element of a Vector Space

$$n$$
-vector: $\mathbf{x} = \left\{ \begin{array}{c} x_1 \\ x_2 \\ \vdots \\ x_n \end{array} \right\} = [x_1 \quad x_2 \cdots x_n]^T$

Vector space \mathcal{V} :

- 1) addition: $u + v \in \mathcal{V}$, and $u, v \in \mathcal{V}$
- 2) multiplication : $\alpha \cdot u \in \mathcal{V}$, and $u \in \mathcal{V}$, $\alpha \in \mathcal{F}$

Vector Space

The addition and multiplication operations must satisfy:

(for
$$\alpha, \beta \in \mathcal{F}$$
 and $u, v \in \mathcal{V}$)

Associativity:
$$u + (v + w) = (u + v) + w$$

Commutativity:
$$u + v = v + u$$

Additive identity:
$$v + 0 = v$$

Additive inverse:
$$v + (-v) = 0$$

Associativity wrt scalar multiplication:
$$\alpha \cdot (\beta \cdot v) = (\alpha \cdot \beta) \cdot v$$

Distributive wrt scalar addition:
$$(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$$

Distributive wrt vector addition:
$$\alpha \cdot (u + v) = \alpha \cdot u + \alpha \cdot v$$

Scalar multiplication identity:
$$1 \cdot (u) = u$$

Linear Functions

Function: $f: \mathcal{X} \to \mathcal{Y}$

The function f takes vectors $x \in \mathcal{X}$ and transforms into vectors $y \in \mathcal{Y}$

A function is a linear function if

$$(1) f(\mathbf{u}+\mathbf{v}) = f(\mathbf{u}) + f(\mathbf{v})$$

(1)
$$f(\mathbf{u}+\mathbf{v}) = f(\mathbf{u})+f(\mathbf{v})$$

(2) $f(a\mathbf{u}) = a f(\mathbf{u})$ for any scalar a

Linear functions?

$$f(x) = \frac{|x|}{x}, \ f: \mathcal{R} \to \mathcal{R}$$

$$f(u) = \frac{|u|}{x} \quad f(v) = \frac{|v|}{v}$$

$$f(u) = \frac{|u|}{v} \quad f(v) = \frac{|v|}{v}$$

$$f(x) = ax + b, f: \mathcal{R} \to \mathcal{R}, \ a, b \in \mathcal{R} \text{ and } a, b \neq 0$$

$$f(u) = au + b$$

$$f(v) = av + b$$

$$= a(u+v) + 2b$$

$$= a(u+v) + 2b$$

$$f(u+v) = a(u+v) + b$$

Matrices

•
$$m \times n$$
-matrix $A = \begin{pmatrix} A_{11} & A_{12} & \dots & A_{1n} \\ A_{21} & A_{22} & \dots & A_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ A_{m1} & A_{m2} & \dots & A_{mn} \end{pmatrix}$

- Linear functions f(x) can be represented by a Matrix-Vector multiplication.
- Think of a matrix \bf{A} as a linear function that takes vectors \bf{x} and transforms them into vectors y

$$y = f(x) \rightarrow y = A x$$

Hence we have:
$$A(u+v) = Au + Av$$
$$A(\alpha u) = \alpha Au$$

Matrix-Vector multiplication

Recall summation notation for matrix-vector multiplication y = A x

$$y_i = \sum_{j=1}^n A_{ij} x_j$$
 $i = 1, 2, ..., m$

You can think about matrix-vector multiplication as:

Linear combination of column vectors of
$$\mathbf{A}$$
 $\mathbf{y} = x_1 \mathbf{A}[:,1] + x_2 \mathbf{A}[:,2] + \cdots + x_n \mathbf{A}[:,n]$

Dot product of \boldsymbol{x} with rows of A

$$y = \begin{pmatrix} A[1,:] \cdot x \\ \vdots \\ A[m,:] \cdot x \end{pmatrix}$$

Matrices operating on data

Example: Shear operator

Matrix-vector multiplication for each vector (point representation in 2D):

$$\begin{pmatrix}
1 & 1.5 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
1 \\
1
\end{pmatrix} = \begin{pmatrix}
1.5 \\
1
\end{pmatrix}$$

$$\begin{pmatrix}
1 & 0.5 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
0 \\
1
\end{pmatrix} = \begin{pmatrix}
0.5 \\
1
\end{pmatrix}$$

$$A = \begin{pmatrix}
1 & 0.5 \\
0 & 1
\end{pmatrix} \begin{pmatrix}
1 & 0.5 \\
0 & 1
\end{pmatrix}$$

Matrices as operators

- **Data**: grid of 2D points
- Transform the data using matrix multiply

What can matrices do?

- 1. Shear
- 2. Rotate
- 3. Scale
- 4. Reflect
- 5. Can they translate?

Rotation operator

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} \cos(\theta) & -\sin(\theta) \\ \sin(\theta) & \cos(\theta) \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Scale operator

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Reflection operator

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} -a & 0 \\ 0 & -b \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$$

Translation (shift)

$$\begin{pmatrix} y_1 \\ y_2 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} x_1 \\ x_2 \end{pmatrix} + \begin{pmatrix} a \\ b \end{pmatrix}$$

$$a = 0.6$$
; $b = 1.1$

Matrices operating on data

Norms

What's a norm?

- A generalization of 'absolute value' to vectors. $f(x): \mathbb{R}^n \to \mathbb{R}_p^+$, returns a 'magnitude' of the input vector
 - In symbols: Often written ||x||.

Define norm.

A function $\|\mathbf{x}\|: \mathbb{R}^n \to \mathbb{R}_0^+$ is called a norm if and only if

- 1. $\|\mathbf{x}\| > 0 \Leftrightarrow \mathbf{x} \neq \mathbf{0}$.
- 2. $\|\gamma \mathbf{x}\| = |\gamma| \|\mathbf{x}\|$ for all scalars γ .
- 3. Obeys triangle inequality $||x + y|| \le ||x|| + ||y||$

Example of Norms

What are some examples of norms?

The so-called *p*-norms:

$$\left\| \begin{pmatrix} x_1 \\ x_n \end{pmatrix} \right\|_p = \left\| x_1 \right\|_p + \dots + \left| x_n \right|_p (p \ge 1)$$

 $p = 1, 2, \infty$ particularly important

$$p=0: |x_1| + |x_2| + \cdots + |x_n|$$

 $p=0: |x_1| + |x_2| + \cdots + |x_n|^2$
 $p=0: |x_1| + |x_2| + \cdots + |x_n|^2$

Norms and Errors

If we're computing a vector result, the error is a vector. That's not a very useful answer to 'how big is the error'. What can we do?

Apply a norm!

How? Attempt 1:

Magnitude of error ≠ ||true value|| ||approximate value|| || WRONG!

Attempt 2:

Magnitude of error = ||true value - approximate value||

Absolute and Relative Errors

What are the absolute and relative errors in approximating the location of Siebel center (40.114, -88.224) as (40, -88) using the 2-norm?

$$X_{\text{true}} = (40.114_{1} - 98.224) \qquad \|||e_{1}||_{p=2} = \frac{||e_{1}||_{p=2}}{||X_{\text{true}}||_{p=2}}$$

$$X_{\text{mea}} = (40, -88) \qquad = \frac{0.2513}{\sqrt{40.114^{2} + 88.224^{2}}}$$

$$e_{0} = (0.114_{1}, -0.224_{1}) \qquad = 0.2513 \qquad ||e_{1}||_{p=2} = 2593 \times 10^{-3}$$

$$||||e_{0}|||_{p=2} = \sqrt{0.114^{2} + 0.224^{2}} = 0.2513 \qquad ||e_{1}||_{p=2} = 2593 \times 10^{-3}$$

Matrix Norms

What norms would we apply to matrices?

Easy answer: 'Flatten' matrix as vector, use vector norm.
 This corresponds to an entrywise matrix norm called the Frobenius norm,

$$||A||_F := \sqrt{\sum_{i,j} a_{ij}^2}.$$

Matrix Norms

However, interpreting matrices as linear functions, what we are really interested in is the maximum amplification of the norm of any vector multiplied by the matrix,

$$||A|| := \max_{||x||=1} ||Ax||.$$

These are called induced matrix norms, as each is associated with a specific vector norm $\|\cdot\|$.

Matrix Norms

The following are equivalent:

$$\max_{\|x\| \neq 0} \frac{\|Ax\|}{\|x\|} = \max_{\|x\| \neq 0} \left\| A \underbrace{\frac{x}{\|x\|}}_{y} \right\| \stackrel{\|y\| = 1}{=} \max_{\|y\| = 1} \|Ay\| = \|A\|.$$

Logically, for each vector norm, we get a different matrix norm, so that, e.g. for the vector 2-norm $\|\mathbf{x}\|_2$ we get a matrix 2-norm $\|\mathbf{A}\|_2$, and for the vector ∞ -norm $\|\mathbf{x}\|_{\infty}$ we get a matrix ∞ -norm $\|\mathbf{A}\|_{\infty}$.

Induced Matrix Norms $||A||_1 = \max_j \sum_{i=1}^n |A_{ij}|$ Maximum absolute column sum of the matrix A $||A||_{\underline{\infty}} = \max_{i} \sum_{i}^{n}$ Maximum absolute row sum of the matrix A

 σ_k are the singular value of the matrix A

Properties of Matrix Norms

Matrix norms inherit the vector norm properties:

- 1. $||A|| > 0 \Leftrightarrow A \neq \mathbf{0}$.
- 2. $\|\gamma A\| = |\gamma| \|A\|$ for all scalars γ .
- 3. Obeys triangle inequality $||A + B|| \le ||A|| + ||B||$

But also some more properties that stem from our definition:

- 1. $||Ax|| \leq ||A|| ||x||$
- 2. $||AB|| \le ||A|| ||B||$ (easy consequence)

Both of these are called submultiplicativity of the matrix norm.

Examples

Determine the norm of the following matrices:

$$\begin{array}{c|c}
1) & \boxed{1 & 2 \\
3 & 4
\end{array} \Rightarrow \begin{array}{c}
3 \\
7
\end{array}$$

Matrix Norm Approximation

Suppose you know that for a given matrix A three vectors \mathbf{x} , \mathbf{y} , \mathbf{z} for the vector norm $\|\cdot\|$,

$$\|\mathbf{x}\| = 2$$
, $\|\mathbf{y}\| = 1$, $\|\mathbf{z}\| = 3$,

and for corresponding induced matrix norm,

$$||A\mathbf{x}|| = 20, ||A\mathbf{y}|| = 5, ||A\mathbf{z}|| = 90.$$

What is the largest lower bound for ||A|| that you can derive from these values?

$$\begin{cases}
\frac{|A \times ||}{|| \times ||}, & \frac{|| A \times ||}{|| \times ||}, & \frac{|| A \times ||}{|| \times ||} \\
= & \{10, 5, 30\} & || A || \longrightarrow 30
\end{cases}$$

Induced Matrix Norm of a Diagonal Matrix

What is the 2-norm-based matrix norm of the diagonal matrix

$$A = \begin{bmatrix} 100 & 0 & 0 \\ 0 & 13 & 0 \\ 0 & 0 & 0.5 \end{bmatrix}$$
?

$$\|A\|_{P=2} = \max_{i} |G_{i}| = 100$$

Induced Matrix Norm of an Inverted Diagonal Matrix

What is the 2-norm-based matrix norm of the inverse of the diagonal matrix

$$\|A^{-1}\|_{p=2}$$

Notation and special matrices

- Square matrix: m = n
- Zero matrix: $A_{ij} = 0$
- Identity matrix $[\boldsymbol{I}] = [\delta_{ij}]$
- Symmetric matrix: $A_{ij} = A_{ji}$ $[\mathbf{A}] = [\mathbf{A}]^T$
- Permutation matrix:

 - Permutes (swaps) rows
- Diagonal matrix: $A_{ij} = 0$, $\forall i, j \mid i \neq j$
- Triangular matrix:

Lower triangular:
$$L_{ij} = \begin{cases} L_{ij}, i \ge j \\ 0, i < j \end{cases}$$
 Upper triangular: $U_{ij} = \begin{cases} U_{ij}, i \le j \\ 0, i > j \end{cases}$

$$\delta_{ij} = \left\{ \begin{array}{ll} 1 & i = j \\ 0 & i \neq j \end{array} \right.$$

• Permutation matrix:
$$\begin{pmatrix} 0 & 0 & 1 \\ 1 & 0 & 0 \\ 0 & 1 & 0 \end{pmatrix} \begin{pmatrix} a \\ b \\ c \end{pmatrix} = \begin{pmatrix} c \\ a \\ b \end{pmatrix}$$

More about matrices

- Rank: the rank of a matrix **A** is the dimension of the vector space generated by its columns, which is equivalent to the number of linearly independent columns of the matrix.
- Suppose *A* has shape $m \times n$:
 - $rank(A) \leq min(m, n)$
 - Matrix A is full rank: rank(A) = min(m, n). Otherwise, matrix A is rank deficient.
- Singular matrix: a square matrix A is invertible if there exists a square matrix B such that AB = BA = I. If the matrix is not invertible, it is called singular.