Sources of Error

Main source of errors in numerical computation:

• Rounding error: occurs when digits in a decimal point (1/3 = 0.3333...) are lost (0.3333) due to a limit on the memory available for storing one numerical value.

• Truncation error: occurs when discrete values are used to approximate a mathematical expression (eg. the approximation $\sin(\theta) \approx \theta$ for small angles θ)

Truncation errors: using Taylor series to approximate functions

Approximating functions using polynomials:

Let's say we want to approximate a function f(x) with a polynomial

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots$$

For simplicity, assume we know the function value and its derivatives at $x_0 = 0$ (we will later generalize this for any point). Hence,

$$f'(x) = a_1 + 2 a_2 x + 3 a_3 x^2 + 4 a_4 x^3 + \cdots$$

$$f''(x) = 2 a_2 + (3 \times 2) a_3 x + (4 \times 3) a_4 x^2 + \cdots$$

$$f'''(x) = (3 \times 2)a_3 + (4 \times 3 \times 2)a_4 x + \cdots$$

$$f'^{v}(x) = (4 \times 3 \times 2)a_4 + \cdots$$

$$f(0) = a_0$$
 $f''(0) = 2a_2$
 $f''(0) = a_1$ $f'''(0) = 3 \times 2a_2$

$$f^{(v)}(0) = 4 \times 3 \times 20$$

$$\int_{a_{i}}^{(i)}(0) = i \cdot a$$

$$a_{i} = \int_{i}^{(i)}(0)$$

Taylor Series

Taylor Series approximation about point $x_o = 0$

$$f(x) = a_0 + a_1 x + a_2 x^2 + a_3 x^3 + a_4 x^4 + \cdots$$

$$f(x) = \sum_{i=0}^{\infty} a_i x^i \qquad \Rightarrow f(x) = \sum_{i=0}^{\infty} \frac{f(i)(0)}{i!} x^i$$

- -> approximate function values
- -> approximate derivatives
- -> estimate error of these approximations

Taylor Series

In a more general form, the Taylor Series approximation about point x_o is given by:

$$f(x) = f(x_o) + f'(x_o)(x - x_o) + \frac{f''(x_o)}{2!}(x - x_o)^2 + \frac{f'''(x_o)}{3!}(x - x_o)^3 + \cdots$$

$$f(x) = \sum_{i=0}^{\infty} \frac{f^{(i)}(x_o)}{i!} (x - x_o)^i$$

Use Taylor to approximate functions at given point $x_0 = 1$ x = 4

Assume a finite Taylor series approximation that converges everywhere for a given function f(x) and you are given the following information:

$$f(1) = 2; f'(1) = -3)f''(1) = 4; f^{(n)}(1) = 0 \forall n \ge 3$$
Evaluate $f(4)$
$$f(4) = \sum_{i=0}^{\infty} \frac{f^{(i)}(x_0)(x - x_0)}{i!} = \frac{f(x_0) + f(x_0)(x - x_0)}{2}$$

$$f(4) = f(1) + f'(1)(4 - 1) + f''(1)(4 - 1)$$

$$= 2 + (-3)(3) + \frac{4}{2}(3)^2 = 5$$

$$f(4) = 11$$

Example:

Given the function

$$f(x) = \frac{1}{(20x - 10)}$$

$$f(0) = \frac{1}{(20x - 10)}$$
Write the Taylor approximation of degree 2 about point x_o

$$f'(x) = \frac{-1(20)}{4(20x-10)^2} \Rightarrow f'(0) = -\frac{1}{5}$$

$$f''(x) = +20(2)(20x-10)(20) \Rightarrow f''(0) = -\frac{4}{5}$$

$$t_2(x) = -\frac{1}{10} - \frac{1}{5}x - \frac{4}{5}\frac{1}{2}x$$

Taylor Series – what is the error?

We cannot sum infinite number of terms, and therefore we have to truncate.

How big is the error caused by truncation? Let's write $h = x - x_0$ $f(x_0) + f'(x_0) + f'(x_0$ i = 141 truncate d

$$|error| = |f(x) - tn(x)|$$

$$= |\int_{i=n+1}^{\infty} f^{(i)}(x) h^{i}|$$

$$= |\int_{i=n+1}^{(n+1)} (x) h^{n+1}| + \int_{i=n+2}^{(n+2)} (x) h^{n+2}|$$

$$|h| > 0 \Rightarrow x \rightarrow x_{0}$$

$$|error| < |M| h^{n+1}| \Rightarrow |error| = O(h^{n+1})$$

Taylor series with remainder

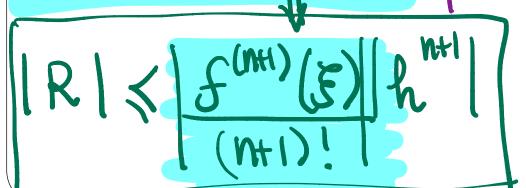
Let f be (n + 1)-times differentiable on the interval (x_o, x) with $f^{(n)}$ continuous on $[x_o, x]$, and $h = x - x_o$

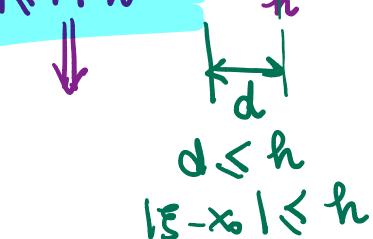
$$f(x) = t_n(x) + R(x)$$

$$R(x) = \sum_{i=n+1}^{\infty} \frac{f^{(i)}(x_o)}{i!} (h)^i$$

Then there exists a $\xi \in (x_o, x)$ so that

$$R(x) = \frac{f^{(n+1)}(\xi)}{(n+1)!} (\xi - x_o)^{n+1}$$





n+1

Graphical representation:

$$f(x)$$
 $f(x)$
 f

How can we use the known asymptotic behavior of the error? $f(x) \longrightarrow t_n(x)$ ei=> hi $e = O(h^{n+1})$

Making error predictions

Suppose you expand $\sqrt{x-10}$ in a Taylor polynomial of degree 3 about the center $x_0=12$. For $h_1=0.5$, you find that the Taylor truncation error is about 10^{-4} .

What is the Taylor truncation error for $h_2 = 0.25$?

$$f(x) = \sqrt{x-10} \longrightarrow t_3(x) \quad x_0 = 12$$

$$h_1 = 0.5 \longrightarrow e_1 = 10^{-4}$$

$$h_2 = 0.25 \longrightarrow e_2 = ?$$

$$e_1 = \begin{pmatrix} h_1 \\ h_2 \end{pmatrix} \longrightarrow \begin{pmatrix} e_2 = \begin{pmatrix} h_2 \\ h_1 \end{pmatrix} e_1$$

$$e_2 = \begin{pmatrix} h_1 \\ h_2 \end{pmatrix}$$

Using Taylor approximations to obtain derivatives

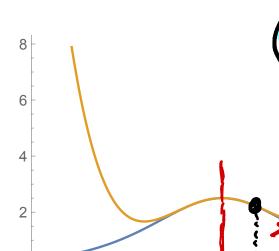
Let's say a function has the following Taylor series expansion about x = 2.

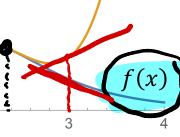
$$\frac{1}{5} \left(\frac{5}{2} - \frac{5}{2} (x - 2)^{2} + \frac{15}{8} (x - 2)^{4} - \frac{5}{4} (x - 2)^{6} + \frac{25}{32} (x - 2)^{8} + 0 (x - 2)^{9} \right)$$

$$\frac{1}{4} = \frac{5}{2} - \frac{5}{2} (x - 2)^{4} + \frac{15}{8} (x - 2)^{4}$$

$$t_{4}^{1} = -5(x-2) + \frac{15}{2}(x-2)^{3}$$

$$t(2.3) = -1.2975$$





t(x)