

Copyright ©: University of Illinois CS 241 Staff 1

Processes
appendix

Process Lifetime

n  Some processes run from system boot to
shutdown
¡  Servers & Daemons

(e.g. Apache httpd server)
n  Most processes come and go rapidly, as

tasks start and complete
¡  'unit of work' on a modern computer

n  A process can die a premature, even
horrible death (say, due to a crash)

Copyright ©: University of Illinois CS 241 Staff 2

Process Creation

n  On creation, process needs resources
¡  CPU, memory, files, I/O devices

n  Get resources from the OS or from the
parent process
¡  Child process is restricted to a subset of parent

resources
¡  Prevents many processes from overloading

system

Copyright ©: University of Illinois CS 241 Staff 3

Process Creation

n  Execution options
¡  Parent continues concurrently with child
¡  Parent waits until child has terminated

n  Address space options
¡  Child process is duplicate of parent process
¡  Child process has a new program loaded into it

Copyright ©: University of Illinois CS 241 Staff 4

Chain and Fan Example (n=4)

Copyright ©: University of Illinois CS 241 Staff 5

pid_t childpid = 0;
for (i=1;i<n;i++)
 if ((childpid =
fork()) == -1)
 break;

Parent
n = 4

Child
i = 1

Child
i = 2

Child
i = 3

Child
i = 2

Child
i = 3

Child
i = 3

Child
i = 4

Child
i = 4

Child
i = 3

Child
i = 4

Child
i = 4

Child
i = 4

Child
i = 4

Child
i = 4

Child
i = 4

Orphan Example

Copyright ©: University of Illinois CS 241 Staff 6

void fork8() {
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",

 getpid());
 while (1); /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",

 getpid());
 exit(0);
 }
}

Orphan Example

Copyright ©: University of Illinois CS 241 Staff 7

void fork8() {
 if (fork() == 0) {
 /* Child */
 printf("Running Child, PID = %d\n",

 getpid());
 while (1); /* Infinite loop */
 } else {
 printf("Terminating Parent, PID = %d\n",

 getpid());
 exit(0);
 }
}

Linux> ./forktest 8
Running Child, PID = 9413
Terminating Parent, PID = 9412
Linux> ps
 PID TTY TIME CMD
 9413 pts/1 00:00:07 forktest
 9416 pts/1 00:00:00 ps
29160 pts/1 00:00:00 bash
Linux> kill 9413
Linux> ps
 PID TTY TIME CMD
 9422 pts/1 00:00:00 ps
29160 pts/1 00:00:00 bash n  Child process still active even

though parent has terminated
n  Must kill explicitly, or else will

keep running indefinitely

wait(), waitpid() System Calls

Copyright ©: University of Illinois CS 241 Staff 8

n  If status is not NULL, wait() stores status information in the
int to which it points. This integer can be inspected with
specific macros (see man pages):

n  WIFEXITED(status)
¡  returns true if the child terminated normally, that is, by calling exit,

or by returning from main().

n  WEXITSTATUS(status)
¡  returns the exit status of the child. This consists of the least

significant 8 bits of the status argument that the child specified in a
call to exit or as the argument for a return statement in main().
This macro should only be employed if WIFEXITED returned true.

Waiting for a child to finish –
waitpid()

#include <sys/types.h>
#include <wait.h>
pid_t waitpid(pid_t pid, int *status, int

options);

n  Suspend calling process until child specified by pid
has finished

n  Returns:
¡  Process ID of terminated child on success
¡  0 if WNOHANG and no child available
¡  -1 on error, sets errno

n  Parameters:
¡  status: status information set by wait and evaluated

using specific macros defined for wait.
Copyright ©: University of Illinois CS 241 Staff 9

Waiting for a child to finish –
waitpid()

void fork11() {
 pid_t pid[N];
 int i;
 int child_status;

 for (i = 0; i < N; i++)
 if ((pid[i] = fork()) == 0)
 exit(100+i); /* Child */
 for (i = N-1; i >= 0; i--) {
 pid_t wpid = waitpid(pid[i], &child_status, 0);
 if (WIFEXITED(child_status))
 printf("Child %d terminated with exit status %d\n",

 wpid, WEXITSTATUS(child_status));
 else
 printf("Child %d terminated abnormally\n", wpid);
 }
}

Copyright ©: University of Illinois CS 241 Staff 10

How to List all Processes?

n  On Windows: run Windows task
manager
¡  Hit Control+ALT+delete
¡  Click on the “processes” tab

n  On UNIX
¡  > ps –e also, pstree
¡  Try “man ps”

Copyright ©: University of Illinois CS 241 Staff 11

