Processes
appendix

Copyright ©: University of Illinois CS 241 Staff

Process Lifetime

Some processes run from system boot to
shutdown

o Servers & Daemons
(e.g. Apache httpd server)

Most processes come and go rapidly, as
tasks start and complete

o 'unit of work' on a modern computer

A process can die a premature, even
horrible death (say, due to a crash)

Copyright ©: University of Illinois CS 241 Staff

Process Creation

On creation, process needs resources
o CPU, memory, files, I/O devices

Get resources from the OS or from the
parent process

o Child process is restricted to a subset of parent
resources

o Prevents many processes from overloading
system

Copyright ©: University of Illinois CS 241 Staff

Process Creation

Execution options
o Parent continues concurrently with child
o Parent waits until child has terminated

Address space options

o Child process is duplicate of parent process
o Child process has a new program loaded into it

Copyright ©: University of Illinois CS 241 Staff

[Chain and Fan Example (n=4)

Parent
n=1 pid t childpid = 0;

for (i=1;i<n;i++)

if ((childpid =
@ @ @ @ o=

@ Copyright ©: University of Illinois CS 241 Staff

Orphan Example

void fork8() {
if (fork() == 0) {
/* Child */
printf ("Running Child, PID = %d\n",
getpid()) ;
while (1); /* Infinite loop */

} else {
printf ("Terminating Parent, PID = %d\n",
getpid()) ;
exit (0) ;
}

Copyright ©: University of Illinois CS 241 Staff

Orphan Example

void fork8() {
if (fork() == 0) {
/* Child */
printf ("Running Chilc
getpid()) ;
while (1); /* Infinii
} else {

Linux> ./forktest 8

Terminating Parent, PID
Linux> ps

rintf ("Terminating 1 PID TTY TIME
P tpid()) 9" 9413 pts/1 00:00:07
gerp ’ 9416 pts/1 00:00:00

exit(0); 29160 pts/1 00:00:00

Linux> kill 9413

Linux> ps
PID TTY TIME
9422 pts/1 00:00:00

Child process still active even 29160 pts/1 00:00:00
though parent has terminated

Must kill explicitly, or else will
keep running indefinitely

Copyright ©: University of Illinois CS 241 Staff

Running Child, PID = 9413

= 9412

CMD
forktest
pPs

bash

CMD

pPs
bash

wait(), waitpid() System Calls

If status is not NULL, wait() stores status information in the
int to which it points. This integer can be inspected with

specific macros (see man pages):

WIFEXITED(status)

o returns true if the child terminated normally, that is, by calling exit,
or by returning from main().

WEXITSTATUS(status)

o returns the exit status of the child. This consists of the least
significant 8 bits of the status argument that the child specified in a
call to exit or as the argument for a return statement in main().
This macro should only be employed if WIFEXITED returned true.

Copyright ©: University of Illinois CS 241 Staff 8]

Waiting for a child to finish —
walitpid ()

#include <sys/types.h>

#include <wait.h>

pid t waitpid(pid t pid, int *status, int
options) ;
Suspend calling process until child specified by pid
has finished

Returns:

o Process ID of terminated child on success
o 0 if WNOHANG and no child available

o -1 o0n error, sets errno

Parameters:

o status: status information set by wait and evaluated
using specific macros defined for wait.

Copyright ©: University of Illinois CS 241 Staff 9]

Waiting for a child to finish —
walitpid ()

void forkll () {
pid t pid[N];
int 1i;
int child _status;

for (i = 0; i < N; i++)
if ((pid[i] = fork()) == 0)

exit (100+i); /* Child */
for (i = N-1; 1 >= 0; i--) {

pid t wpid = waitpid(pid[i], &child status, 0);

if (WIFEXITED (child_status))

printf ("Child %d terminated with exit status %d\n",
wpid, WEXITSTATUS (child status));
else

printf ("Child %d terminated abnormally\n", wpid);

Copyright ©: University of Illinois CS 241 Staff

[How to List all Processes?

On Windows: run Windows task
manager

o Hit Control+ALT+delete
o Click on the “processes” tab

On UNIX

o > ps —-e also, pstree
o Try “man ps”

Copyright ©: University of Illinois CS 241 Staff

