Networking 2: The Lecture

CS 24|

April 16,2014

The Internet’'s Protocol Stack

Application

Transport

L
T

e
e

Physical

Anything you want...

Process-to-process communication

Host-to-host packet delivery across the Internet

Host-to-host packet delivery across a link

Host-to-host bit delivery across a link

Internet Architecture:
The “Hourglass” Design

FTP HTTP NV TFTP
TCP UDP

Ethernet

3G wireless

MPLS

N

Modem

Why layering?

It’s all about modularity

* Eases maintenance, updating of system

* Change of implementation of layer’s service transparent to rest of
system

* e.g., change in transmission medium (Layer 0) has no effect on network
protocol or applications

What other examples of layering have we seen?

Encapsulation:
Traveling through the layers

Network Packet Encapsulation

Upper Layer Message
1
Upper }-------------mmmmmmmmmmme oo o LLJ;)S:: Upper Layer [|------------o- | Upper
e Headers |(APPlication) Data| f............ /| Layers
il | T
l TCP/UDP Message N
1
Lo TCPUDP| PP | Upper Layer | [--eeeeeeeeae- | TCP 1
UDP b-y------mmmmmmmmmeeeee Header Hea)c,iers (Application) Data | | “| UDP
b i| .

1 IP Datagram " : T
e P [TcPuDP| PP ypper Layer [| --eeeeeeeeee A
I Header | Header Hea)éers (Application) Data| | -------------- o
l : T

Layer 2 Frame "
Layer |-*--{| Layer2 | 1P |TCP/UDP LL’;’S:: Upper Layer | Layer2 || ---1.] Layer
2 }-1--| | Header | Header | Header (Application) Data| Footer i 2
Headers "
LL) T
| Layer
l' 1

Source: http://www.tcpipguide.com/free/t_IPDatagramEncapsulation.htm

The network layer provides “host-to-host” connectivity.
* InIP, done via IP Addresses
= Globally unique 32-bit numbers
= Usually written as four 8-bit integers: 127.0.0.1

= IPvé: 128-bits, written as eight sets of |6-bit hexadecimal
numbers (ex: 2001:0DBB:AC10:FEO1:0000:0000:0000:C3D4
== 2001:0DBB:ACI10:FEQI::C3D4)

* |P addresses are hard to remember!

= Domain names associate easy-to-remember names that can be
translated to IP addresses via the DNS protocol.

Understanding TCP

TCP provides:

* Port number to identify a process
* Reliable delivery of packets

* Check data integrity via checksums
* Pipe abstraction (stream)

* Congestion control

* Flow control

TCP doesn’t provide:
* Structure to data

* Security / encryptii;

n . .
..while the session is active.

Understanding UDP

UDP provides:

* Port number for process-to-process communication
* Lower-level access to the network via discrete packets

= Greater speed and flexibility

UDP doesn’t provide:

* Everything else

Creating a TCP session

Server:

* Creates a socket to listen for incoming connections.
* Must listen on a specific protocol/port.

server

TCP/80 Q

Creating a TCP session

Client:

* Creates a socket to connect to a remote computer.

server

TCP/80 Q

Creating a TCP session

Client:
* Requests a connection to TCP port 80 on 74.125.225.70.

server

TCP/80 Q

Creating a TCP session

Server:

* Accepts the connection.

server

TCP/80

Creating a TCP session

Server:

* Spawns a new socket to communicate directly with the newly
connected client.

* Allows other clients to connect.

server

TCP/80 Q

Two way
communications

Network Vocabulary

Socket Address

* Complete identification of the socket you are connecting to. Made up
of three pieces:

= Protocol (ex: TCP)
= Network Address (ex: 127.0.0.1)
= Port Number (ex: 80)

Port Number

* Globally shared system resource, |6-bit integer (0 to 65,535)

* A port number can only be used by one process at a time on the
entire system

* Ports below 1024 are “special”
= Associated with particular applicaitons

= Use often requires elevated privileges (e.g. root)

A network socket is stream-based IPC.

Similar to a pipe:
* Uses the file descriptor interface
* Stream-based, not segment- or message-based

Different from a pipe:
* The file descriptor is bi-directional (read and write)
* Reliability based on the transport protocol used

* Special type of “server socket” that listens for incoming connections
from remove hosts and does not transmit any application data!

Creating a network socket (client and
server)

socket (): Create an endpoint for communication

int socket (int network protocol,
int transport protocol,
int sub protocol)

IP: AF INET IPv6: AF INET6
TCP: SOCK STREAM UDP: SOCK DGRAM

Setting up a server socket

getaddrinfo(): network address translation

* Translates a hostname (IP address or domain name), port, and protocol
into a socket address struct.

bind(): binds an socket address to a socket

* Required in order to know what port number your socket will be
listening for new connections

Listen(): places the socket in a listening state

accept(): accept a communication on a socket

* 1nt accept(int sockfd,
struct sockaddr *addr,
socklen_t *addrlen);

Setting up a client socket

connect(): initiate a connection on a socket

 1int connect(int sockfd,
struct sockaddr *addr,
socklen_t *addrlen);

