
1

Networking 2: The Lecture

CS 241

April 16, 2014

University of Illinois

2

The Internet’s Protocol Stack

Physical

Data Link

Network

Transport

Application Anything you want...

Process-to-process communication

Host-to-host packet delivery across the Internet

Host-to-host packet delivery across a link

Host-to-host bit delivery across a link

3

Internet Architecture:
The “Hourglass” Design

FTP

TCP

Modem MPLS 3G wireless Ethernet

IP

UDP

TFTP NV HTTP

4

Why layering?

It’s all about modularity
•  Eases maintenance, updating of system
•  Change of implementation of layer’s service transparent to rest of

system
•  e.g., change in transmission medium (Layer 0) has no effect on network

protocol or applications

What other examples of layering have we seen?

5

Encapsulation:
Traveling through the layers

Application
program

Application
program

Application
program

Reliable
Service

Host-to-Host

DATA

TCP HDR DATA

Application
program

Reliable
Service

Host-to-Host

DATA

TCP HDR DATA

IP HDR TCP HDR DATA

Best effort
Service

Best effort
Service

IP HDR TCP HDR DATA IP HDR TCP HDR DATA

6

Network Packet Encapsulation

Source: http://www.tcpipguide.com/free/t_IPDatagramEncapsulation.htm

7

Understanding IP
The network layer provides “host-to-host” connectivity.

•  In IP, done via IP Addresses
!  Globally unique 32-bit numbers
!  Usually written as four 8-bit integers: 127.0.0.1
!  IPv6: 128-bits, written as eight sets of 16-bit hexadecimal

numbers (ex: 2001:0DBB:AC10:FE01:0000:0000:0000:C3D4
 == 2001:0DBB:AC10:FE01::C3D4)

•  IP addresses are hard to remember!
!  Domain names associate easy-to-remember names that can be

translated to IP addresses via the DNS protocol.

8

Understanding TCP

TCP provides:
•  Port number to identify a process
•  Reliable delivery of packets
•  Check data integrity via checksums
•  Pipe abstraction (stream)
•  Congestion control
•  Flow control

TCP doesn’t provide:
•  Structure to data
•  Security / encryption

…while the session is active.

9

Understanding UDP

UDP provides:
•  Port number for process-to-process communication
•  Lower-level access to the network via discrete packets

!  Greater speed and flexibility

UDP doesn’t provide:
•  Everything else

10

Creating a TCP session

server client

Server:
•  Creates a socket to listen for incoming connections.
•  Must listen on a specific protocol/port.

TCP/80

11

Creating a TCP session

server client

Client:
•  Creates a socket to connect to a remote computer.

TCP/80

12

Creating a TCP session

server client

Client:
•  Requests a connection to TCP port 80 on 74.125.225.70.

TCP/80

13

Creating a TCP session

server client

Server:
•  Accepts the connection.

TCP/80

14

Creating a TCP session

server client

Server:
•  Spawns a new socket to communicate directly with the newly

connected client.
•  Allows other clients to connect.

TCP/80

Two way
communications

15

Network Vocabulary
Socket Address

•  Complete identification of the socket you are connecting to. Made up
of three pieces:
!  Protocol (ex: TCP)
!  Network Address (ex: 127.0.0.1)
!  Port Number (ex: 80)

Port Number
•  Globally shared system resource, 16-bit integer (0 to 65,535)
•  A port number can only be used by one process at a time on the

entire system
•  Ports below 1024 are “special”

!  Associated with particular applicaitons
!  Use often requires elevated privileges (e.g. root)

16

Network socket

A network socket is stream-based IPC.

Similar to a pipe:
•  Uses the file descriptor interface
•  Stream-based, not segment- or message-based

Different from a pipe:
•  The file descriptor is bi-directional (read and write)
•  Reliability based on the transport protocol used
•  Special type of “server socket” that listens for incoming connections

from remove hosts and does not transmit any application data!

17

Creating a network socket (client and
server)
socket(): Create an endpoint for communication

int socket(int network_protocol,
 int transport_protocol,
 int sub_protocol)

 IP: AF_INET IPv6: AF_INET6
 TCP: SOCK_STREAM UDP: SOCK_DGRAM

18

Setting up a server socket

getaddrinfo(): network address translation
•  Translates a hostname (IP address or domain name), port, and protocol

into a socket address struct.

bind(): binds an socket address to a socket
•  Required in order to know what port number your socket will be

listening for new connections

listen(): places the socket in a listening state

accept(): accept a communication on a socket
•  int accept(int sockfd,  

 struct sockaddr *addr,  
 socklen_t *addrlen);	

19

Setting up a client socket

connect(): initiate a connection on a socket
•  int connect(int sockfd,  

 struct sockaddr *addr,  
 socklen_t *addrlen);	

