
Copyright © University of Illinois CS 241 Staff 1

Sockets: send, recv
Network Applications: HTTP

Announcements

  Still using this nifty old slide format...
  MP7 due tomorrow
  Brighten’s office hours

  Tue 3:30 – 5:30, 0220 SC
  Wed 3:00 – 5:00, 3211 SC

Copyright © University of Illinois CS 241 Staff 2

Client-Server Model

Copyright © University of Illinois CS 241 Staff 3

server client

  Server:
  Creates a socket to listen for incoming

connections.
  Must listen on a specific protocol/port.

TCP/80

Client-Server Model

Copyright © University of Illinois CS 241 Staff 4

server client

  Client:
  Creates a socket to connect to a remote

computer.

TCP/80

Client-Server Model

Copyright © University of Illinois CS 241 Staff 5

server client

  Client:
  Requests a connection to TCP port 80 on

74.125.225.70.

TCP/80

Client-Server Model

Copyright © University of Illinois CS 241 Staff 6

server client

  Server:
  Accepts the connection.

TCP/80

Client-Server Model

Copyright © University of Illinois CS 241 Staff 7

server client

  Server:
  Spawns a new socket to communicate

directly with the newly connected client.
  Allows other clients to connect.

TCP/80

Two way
communications

Creating a “Server Socket”

socket(): Creates a new socket for a
 specific protocol (eg: TCP)

bind(): Binds the socket to a specific
 port (eg: 80)

listen(): Moves the socket into a state
 of listening for incoming
 connections.

accept(): Accepts an incoming
 connection. Copyright © University of Illinois CS 241 Staff 8

Creating a “Client Socket”

socket(): Creates a new socket for a
 specific protocol (eg: TCP)

connect():
 Makes a network connection

 to a specified IP address and
 port.

Copyright © University of Illinois CS 241 Staff 9

Functions: accept

  Notes
  After accept() returns a new socket

descriptor, I/O can be done using read() and
write()

  Why does accept() need to return a new
descriptor?

CS 241 Copyright ©: University of Illinois CS 241 Staff 10

CS 241 Copyright ©: University of Illinois CS 241 Staff 11

Sending and Receiving Data

int send(int sockfd, const void * buf,
size_t nbytes, int flags);
  Write data to a stream (TCP) or “connected”

datagram (UDP) socket.
  Returns number of bytes written or -1.

int recv(int sockfd, void *buf, size_t
nbytes, int flags);
  Read data from a stream (TCP) or “connected”

datagram (UDP) socket.
  Returns number of bytes read or -1.

CS 241 Copyright ©: University of Illinois CS 241 Staff 12

Functions: send

int send(int sockfd, const void * buf, size_t
nbytes, int flags);

  Send data un a stream (TCP) or “connected”
datagram (UDP) socket
  Returns number of bytes written or -1 and sets errno on

failure
  sockfd: socket file descriptor (returned from socket)
  buf: data buffer
  nbytes: number of bytes to try to write
  flags: control flags

  MSG_PEEK: get data from the beginning of the receive queue without
removing that data from the queue

CS 241 Copyright ©: University of Illinois CS 241 Staff 13

Functions: send

int send(int sockfd, const void * buf, size_t
nbytes, int flags);

  Example
len = strlen(msg);
bytes_sent = send(sockfd, msg, len, 0);

CS 241 Copyright ©: University of Illinois CS 241 Staff 14

Functions: recv

int recv(int sockfd, void *buf, size_t nbytes,
int flags);

  Read data from a stream (TCP) or “connected”
datagram (UDP) socket
  Returns number of bytes read or -1, sets errno on failure
  Returns 0 if socket closed
  sockfd: socket file descriptor (returned from socket)
  buf: data buffer
  nbytes: number of bytes to try to read
  flags: see man page for details; typically use 0

CS 241 Copyright ©: University of Illinois CS 241 Staff 15

Functions: recv

int recv(int sockfd, char* buf, size_t nbytes);

  Notes
  read blocks waiting for data from the client but does not

guarantee that sizeof(buf) is read
  Example

if((r = read(newfd, buf, sizeof(buf))) < 0) {
 perror(“read”); exit(1);
}

Sending and Receiving Data

  Datagram sockets aren't connected to a
remote host
  What piece of information do we need to give

before we send a packet?
  The destination/source address!

CS 241 Copyright ©: University of Illinois CS 241 Staff 16

CS 241 Copyright ©: University of Illinois CS 241 Staff 17

Sending and Receiving Data

int sendto (int sockfd, char* buf,
size_t nbytes, int flags, struct
sockaddr* destaddr, int addrlen);
  Send a datagram to another UDP socket.

  Returns number of bytes written or -1.

int recvfrom (int sockfd, char* buf,
size_t nbytes, int flags, struct
sockaddr* srcaddr, int* addrlen);
  Read a datagram from a UDP socket.

  Returns number of bytes read or -1.

CS 241 Copyright ©: University of Illinois CS 241 Staff 18

Functions: sendto

int sendto (int sockfd, char* buf, size_t nbytes,
int flags, struct sockaddr* destaddr, int
addrlen);

  Send a datagram to another UDP socket
  Returns number of bytes written or -1 and sets errno on failure
  sockfd: socket file descriptor (returned from socket)
  buf: data buffer
  nbytes: number of bytes to try to read
  flags: see man page for details; typically use 0
  destaddr: IP address and port number of destination socket
  addrlen: length of address structure

  = sizeof (struct sockaddr_in)

CS 241 Copyright ©: University of Illinois CS 241 Staff 19

Functions: sendto

int sendto (int sockfd, char* buf, size_t nbytes,
int flags, struct sockaddr* destaddr, int
addrlen);

  Example
n = sendto(sock, buf, sizeof(buf), 0,(struct

sockaddr *) &from,fromlen);
if (n < 0)

 perror("sendto");
 exit(1);

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 20

Functions: recvfrom

int recvfrom (int sockfd, char* buf, size_t
nbytes, int flags, struct sockaddr* srcaddr,
int* addrlen);

  Read a datagram from a UDP socket.
  Returns number of bytes read (0 is valid) or -1 and sets errno

on failure
  sockfd: socket file descriptor (returned from socket)
  buf: data buffer
  nbytes: number of bytes to try to read
  flags: see man page for details; typically use 0
  srcaddr: IP address and port number of sending socket

(returned from call)
  addrlen: length of address structure = pointer to int set to

sizeof (struct sockaddr_in)

CS 241 Copyright ©: University of Illinois CS 241 Staff 21

Functions: recvfrom

int recvfrom (int sockfd, char* buf, size_t
nbytes, int flags, struct sockaddr* srcaddr,
int* addrlen);

  Example
n = recvfrom(sock, buf, 1024, 0, (struct sockaddr

*)&from,&fromlen);
if (n < 0) {

 perror("recvfrom");
 exit(1);

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 22

Tearing Down a Connection

int close (int sockfd);
  Close a socket.

  Returns 0 on success, -1 and sets errno on failure.

int shutdown (int sockfd, int howto);
  Force termination of communication across a socket in

one or both directions.
  Returns 0 on success, -1 and sets errno on failure.

CS 241 Copyright ©: University of Illinois CS 241 Staff 23

Functions: close

int close (int sockfd);
  Close a socket

  Returns 0 on success, -1 and sets errno on failure
  sockfd: socket file descriptor (returned from socket)

  Closes communication on socket in both directions
  All data sent before close are delivered to other side

(although this aspect can be overridden)

  After close, sockfd is not valid for reading or
writing

CS 241 Copyright ©: University of Illinois CS 241 Staff 24

Functions: shutdown

int shutdown (int sockfd, int howto);
  Force termination of communication across a socket in one or

both directions
  Returns 0 on success, -1 and sets errno on failure
  sockfd: socket file descriptor (returned from socket)
  howto:

  SHUT_RD to stop reading
  SHUT_WR to stop writing
  SHUT_RDWR to stop both

  shutdown overrides the usual rules regarding duplicated
sockets, in which TCP teardown does not occur until all copies
have closed the socket

Note on close vs. shutdown

  close(): closes the socket but the connection is
still open for processes that shares this socket
  The connection stays opened both for read and write

  shutdown(): breaks the connection for all
processes sharing the socket
  A read will detect EOF, and a write will receive SIGPIPE
  shutdown() has a second argument how to close the

connection:
  0 means to disable further reading
  1 to disable writing
  2 disables both

CS 241 Copyright ©: University of Illinois CS 241 Staff 25

CS 241 Copyright ©: University of Illinois CS 241 Staff 26

Application Layer

Networked Applications

  All networked applications use
“application level” protocols to
communicate

  Examples
  HTTP
  FTP
  SMTP
  …

CS 241 Copyright ©: University of Illinois CS 241 Staff 27

Web and HTTP

  Web pages consist of
  Objects

  HTML files, JPEG images, Java applets, audio files,…
  Base HTML-file

  Includes several referenced objects

  Each object is addressable by a URL
  Example URL:

CS 241 Copyright ©: University of Illinois CS 241 Staff 28

www.someschool.edu/someDept/pic.gif

host name path name

HTTP (Hypertext Transfer
Protocol)

  Web’s application
layer protocol

  Client/server model
  Client

  Browser that
requests, receives,
“displays” Web
objects

  Server
  Web server sends

objects in response to
requests

Copyright ©: University of Illinois CS 241 Staff 29

PC running
Explorer

Server
running

Apache Web
server

Mac running
Chrome

CS 241

HTTP

  Uses TCP
  Client initiates TCP connection (creates socket) to server,

port 80
  Server accepts TCP connection from client
  HTTP messages (application-layer protocol messages)

exchanged between browser (HTTP client) and Web
server (HTTP server)

  TCP connection closed

  Stateless
  Server maintains no information about past client requests

Copyright ©: University of Illinois CS 241 Staff 30 CS 241

HTTP Connections

  Nonpersistent
HTTP
  At most one object

is sent over a TCP
connection

  Persistent HTTP
  Multiple objects can

be sent over single
TCP connection
between client and
server

Copyright ©: University of Illinois CS 241 Staff 31 CS 241

Nonpersistent HTTP

  User enters URL
  Text plus references to 10 jpeg images

www.someschool.edu/someDepartment/home.index

32

time

1a. HTTP client initiates TCP
connection to HTTP server at
www.someschool.edu
on port 80

1b. HTTP server at host
www.someschool.edu waiting
for TCP connection at port 80.
“accepts” connection, notifying
client

2. HTTP client sends HTTP
request message (containing
URL) into TCP socket. Message
indicates that client wants object
someDepartment/
home.index

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

CS 241 Copyright ©: University of Illinois CS 241 Staff

Nonpersistent HTTP

33

5. HTTP client receives response
message containing html file,
displays html. Parsing html
file, finds 10 referenced jpeg
objects

6. Steps 1-5 repeated for each of
10 jpeg objects

4. HTTP server closes TCP
connection.

3. HTTP server receives request
message, forms response
message containing requested
object, and sends message into
its socket

time

CS 241 Copyright ©: University of Illinois CS 241 Staff

Response Time: First request

  RTT
  Time for a small packet

to travel from client to
server and back

  Response time
  One RTT to initiate

TCP connection
+  One RTT for HTTP

request and first few
bytes of HTTP
response to return

+  File transmission time
=  2RTT+transmit time

34

time to
transmit
file

initiate TCP
connection

RTT

request
file

RTT

file
received

time time

CS 241 Copyright ©: University of Illinois CS 241 Staff

Response time for
whole web page

  Nonpersistent HTTP
  Requires 2 RTTs per

object
  OS overhead for each

TCP connection
  Browsers often open

parallel TCP
connections to fetch
referenced objects

  Persistent HTTP
  Server leaves connection

open after sending response
  Subsequent HTTP messages

between same client/server
sent over open connection

  Client sends requests as soon
as it encounters a referenced
object

  As little as one RTT total for
all the referenced objects
  See “HTTP pipelining”

35 CS 241 Copyright ©: University of Illinois CS 241 Staff

Aside:
Do a few RTTs matter?

  Collective experiment

Copyright © University of Illinois CS 241 Staff 36

ping your_favorite_domain.foo	

HTTP Request Message

  Two types of HTTP messages: request, response
  ASCII (human-readable format)

  HTTP request message:

37

GET /somedir/page.html HTTP/1.1
Host: www.someschool.edu
User-agent: Mozilla/4.0
Connection: close
Accept-language:fr

 (extra carriage return, line feed)

request line
(GET, POST,

HEAD commands)

header
 lines

Carriage return,
line feed

indicates end
of message

CS 241 Copyright ©: University of Illinois CS 241 Staff

Method Types

  HTTP/1.0
  GET
  POST
  HEAD

  Asks server to
leave requested
object out of
response

  HTTP/1.1
  GET, POST, HEAD
  PUT

  Uploads file in entity
body to path
specified in URL
field

  DELETE
  Deletes file

specified in the URL
field

38 CS 241 Copyright ©: University of Illinois CS 241 Staff

HTTP Request Message:
General Format

39

method sp URL sp version cr lf

header field name : value cr lf

header field name : value cr lf

header field name : value cr lf

…
cr lf

entity body

Request
line

Header
lines

CS 241 Copyright ©: University of Illinois CS 241 Staff

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

Uploading Form Input

  Post method
  Web page often includes form of input
  Input is uploaded to server in entity body

  URL method
  Uses GET method
  Input is uploaded in URL field of request

line:
www.somesite.com/animalsearch?monkeys&banana

40 CS 241 Copyright ©: University of Illinois CS 241 Staff

HTTP Response Message

41

HTTP/1.1 200 OK
Connection close
Date: Thu, 06 Aug 1998 12:00:15 GMT
Server: Apache/1.3.0 (Unix)
Last-Modified: Mon, 22 Jun 1998 …...
Content-Length: 6821
Content-Type: text/html

data data data data data ...

status line
(protocol

status code
status phrase)

header
 lines

data, e.g.,
requested
HTML file

CS 241 Copyright ©: University of Illinois CS 241 Staff

HTTP response status codes

  In first line in server->client response message
  A few sample codes

42

200 OK request succeeded, requested object later in
this message

301 Moved
Permanently

requested object moved, new location
specified later in this message (Location:),
client automatically retrieves new URL

400 Bad Request request message not understood by server
404 Not Found requested document not found on this server
505 HTTP Version

Not Supported

CS 241 Copyright ©: University of Illinois CS 241 Staff

HTTP response status codes

  In first line in server->client response message
  A few sample codes
  More in the illustrated guide...

  http://tinyurl.com/cvyepwt

43 CS 241 Copyright ©: University of Illinois CS 241 Staff

Trying out HTTP (client side)
For Yourself

1. Telnet to your favorite Web server
telnet www.cs.illinois.edu 80

2. Type in a GET HTTP request
GET /class/sp12/cs241/index.html

HTTP/1.0

3. Look at response message sent by

HTTP server!

44

Opens TCP connection to port 80
(default HTTP server port) at
www.cs.illinois.edu.
Anything typed in sent
to port 80 at cs.illinois.edu

By typing this in (hit carriage
return twice), you send
this minimal (but complete)
GET request to HTTP server

CS 241 Copyright ©: University of Illinois CS 241 Staff

User-server State: Cookies

  Many major Web sites
use cookies

  Four components
1.  Cookie header line of

HTTP response message
2.  Cookie header line in

HTTP request message
3.  Cookie file kept on user’s

host, managed by user’s
browser

4.  Back-end database at
Web site

  Example
  Alice always accesses

Internet from PC
  Visits specific e-

commerce site for first
time

  When initial HTTP
requests arrives at site,
site creates:
  unique ID
  entry in backend

database for ID

45 CS 241 Copyright ©: University of Illinois CS 241 Staff

Cookies

  What cookies can bring
  Authorization
  Shopping carts
  Recommendations
  User session state (Web e-

mail)

  How to keep “state”
  Protocol endpoints: maintain

state at sender/receiver over
multiple transactions

  cookies: http messages
carry state

  Cookies and
privacy
  Cookies permit

sites to learn a lot
about you

  You may supply
name and e-mail
to sites

46 CS 241 Copyright ©: University of Illinois CS 241 Staff

Cookies: Keeping “State”

47

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific
action

access

ebay 8734
usual http request msg Amazon server

creates ID
1678 for user create

 entry

usual http response
Set-cookie: 1678

ebay 8734
amazon 1678

usual http request msg
cookie: 1678 cookie-

specific
action

access
ebay 8734
amazon 1678

backend
database

CS 241 Copyright ©: University of Illinois CS 241 Staff

