
Copyright ©: University of Illinois CS 241 Staff

File systems: User-level view

11

Copyright ©: University of Illinois CS 241 Staff

File system API (a sample)

 The basics: open(), close(), read(), write()
 Permissions: chmod(), chown()
 Metadata: stat(), fstat(), lstat()
 Directories: mkdir(), rmdir(), opendir(),

closedir()

 Links: link(), unlink(), symlink()

2

Copyright ©: University of Illinois CS 241 Staff

open – read – close

int fd;
fd = open("/tmp/1.txt", options);
read(fd,buffer,sizeof(buffer));
close(fd);

Note: any of these can
result in an error!

Copyright ©: University of Illinois CS 241 Staff

What can go wrong with open?

Copyright ©: University of Illinois CS 241 Staff

 EACCES The requested access to the file is not allowed, or search permission is denied for one of the directories in the path
prefix of pathname, or the file did not exist yet and write access to the parent directory is not allowed. (See also
path_resolution(2).)

 EEXIST pathname already exists and O_CREAT and O_EXCL were used.
 EFAULT pathname points outside your accessible address space.
 EISDIR pathname refers to a directory and the access requested involved writing (that is, O_WRONLY or O_RDWR is set).
 ELOOP Too many symbolic links were encountered in resolving pathname, or O_NOFOLLOW was specified but pathname was a

symbolic link.
 EMFILE The process already has the maximum number of files open.
 ENAMETOOLONG pathname was too long.
 ENFILE The system limit on the total number of open files has been reached.
 ENODEV pathname refers to a device special file and no corresponding device exists. (This is a Linux kernel bug; in this

situation ENXIO must be returned.)
 ENOENT O_CREAT is not set and the named file does not exist. Or, a directory component in pathname does not exist or is a

dangling symbolic link.
 ENOMEM Insufficient kernel memory was available.
 ENOSPC pathname was to be created but the device containing pathname has no room for the new file.
 ENOTDIR A component used as a directory in pathname is not, in fact, a directory, or O_DIRECTORY was specified and

pathname was not a directory.
 ENXIO O_NONBLOCK | O_WRONLY is set, the named file is a FIFO and no process has the file open for reading. Or, the file is a

device special file and no corresponding device exists.
 EOVERFLOW pathname refers to a regular file, too large to be opened; see O_LARGEFILE above.
 EPERM The O_NOATIME flag was specified, but the effective user ID of the caller did not match the owner of the file and the

caller was not privileged (CAP_FOWNER).
 EROFS pathname refers to a file on a read-only filesystem and write access was requested.
 ETXTBSY pathname refers to an executable image which is currently being executed and write access was requested.

What can go wrong with open?

Copyright ©: University of Illinois CS 241 Staff

Open returns a file descriptor

 A structure created inside kernel for each file
opened by each process
 Contains pointer to process’s current location inside file

 ID passed back to process for future read, write,
and close calls

 E.g.: Unique file descriptors created for
 Process p opening two different files f and g
 Process p opening f, and process q opening g
 Processes p and q both opening f
 Each of the above cases result in 2 FDs being created

 File desc. structure is destroyed by close() call
 Note: Upon fork(), child inherits a copy of the

parent's file descriptors

Copyright ©: University of Illinois CS 241 Staff

File system API (a sample)

 The basics: open(), close(), read(), write()
 Permissions: chmod(), chown()
 Metadata: stat(), fstat(), lstat()
 Directories: mkdir(), rmdir(), opendir(),

closedir()

 Links: link(), unlink(), symlink()

7

Copyright ©: University of Illinois CS 241 Staff

Protection and Access Lists

 Associate each file and directory with access list
 Lists who is authorized to access the file
 For each person, lists the mode in which access is

authorized (e.g., read/write/execute/append/delete/list)
 Problem with access list: length
 Solution: (Unix-style) condensed version of the

access list
 (u=user) owner - user who created the file
 (g=group) group - a set of users who are sharing the file

and need similar access
 (o=other) universe - all other users

Copyright ©: University of Illinois CS 241 Staff

Access Lists Example

 UNIX - 3 fields of length 3 bits are used.
 User categories:

 user(u),group(g),others(o)
 Access bits:

 read(r), write(w), execute(x)
 The change mode (chmod) command:

 chmod go+rw myfile

Copyright ©: University of Illinois CS 241 Staff

Access Control sys/stat.h

R W X R W X R W X

user group others

S_IRUSR
S_IWUSR
S_IXUSR
S_IRWXU

S_IRGRP
S_IWGRP
S_IXGRP
S_IRWXG

S_IROTH
S_IWOTH
S_IXOTH
S_IRWXO

S_ISUID – set user ID on execution
S_ISGID – set group ID on execution

Can use these in flags supplied to open, or with struct stat.st_mode to check,
e.g., if (st.st_mode&S_IRUSR==0)…

Copyright ©: University of Illinois CS 241 Staff

File Access Example
#include <stdio.h>
#include <fcntl.h>

int main(int argc, char** argv) {
 int fd;
 mode_t fdmode = (S_IRUSR | S_IWUSR |
 S_IRGRP | S_IROTH);

 fd = open("f.txt", O_RDWR | O_CREAT, fdmode);
 if (fd == -1)
 perror("Failed to open f.txt");
}

Copyright ©: University of Illinois CS 241 Staff

File Access Example
#include <stdio.h>
#include <fcntl.h>

int main(int argc, char** argv) {
 int fd;
 mode_t fdmode = (S_IRUSR | S_IWUSR |
 S_IRGRP | S_IROTH);

 fd = open("f.txt", O_RDWR | O_CREAT, fdmode);
 if (fd == -1)
 perror("Failed to open f.txt");
}

User: read, write
Group: read
Other: read

Open file in current
directory for reading & writing.

Overwrites any existing file.

Copyright ©: University of Illinois CS 241 Staff

It’s not the be-all and end-all

 Unix’s traditional access control is a
compromise, not the holy grail

 Other systems have more flexible
control
 e.g, Andrew File System has ACLs
 web sites do various things (e.g.,

permissions based on friend or friend-of-
friend relationships on social networks)

13

Copyright ©: University of Illinois CS 241 Staff

File system API (a sample)

 The basics: open(), close(), read(), write()
 Permissions: chmod(), chown()
 Metadata: stat(), fstat(), lstat()
 Directories: mkdir(), rmdir(), opendir(),

closedir()

 Links: link(), unlink(), symlink()

14

Copyright ©: University of Illinois CS 241 Staff

stat

 Meta-information about a file
 E.g., Modification and access time
 Kind of file (e.g. Directory | regular file?)
 Support for symbolic (“soft”) links

Copyright ©: University of Illinois CS 241 Staff

stat versions

 Three flavors
 int stat(const char *path, struct stat *buf);
 int fstat(int filedes, struct stat *buf);
 int lstat(const char *path, struct stat *buf);

 stat and fstat are the same, except stat
works on pathnames and fstat on file
descriptors

 lstat is the same too, except for a symlink:
 stat, fstat return info about the referenced file
 lstat returns info about the symlink itself

Copyright ©: University of Illinois CS 241 Staff

struct stat {
 dev_t st_dev; /* ID of device containing file */
 ino_t st_ino; /* inode number */
 mode_t st_mode; /* mode and protection */
 nlink_t st_nlink; /* number of hard links */
 uid_t st_uid; /* user ID of owner */
 gid_t st_gid; /* group ID of owner */
 dev_t st_rdev; /* device ID (if special file) */
 off_t st_size; /* total size, in bytes */
 blksize_t st_blksize; /* blocksize for filesystem I/O */
 blkcnt_t st_blocks; /* number of blocks allocated */
 time_t st_atime; /* time of last access */
 time_t st_mtime; /* time of last modification */
 time_t st_ctime; /* time of last status change */
};

What stat gives you

Copyright ©: University of Illinois CS 241 Staff

Stat macros (st_mode)

 S_ISREG(m) is it a regular file?
 S_ISDIR(m) directory?
 S_ISCHR(m) character device?
 S_ISBLK(m) block device?
 S_ISFIFO(m) FIFO (named pipe)?
 S_ISLNK(m) symbolic link?*
 S_ISSOCK(m) socket?*

*(Not in POSIX.1-1996.)

Copyright ©: University of Illinois CS 241 Staff

stat example

#include <stdio.h>
#include <sys/stat.h>

int main(int argc, char** argv) {

 struct stat s;

 stat(argv[1], &s);

 printf("inode: %10d\n", s.st_ino);

 printf("# links: %10d\n", s.st_nlink);

 printf("size: %10d\n", s.st_size);
}

Let’s try it out...

Copyright ©: University of Illinois CS 241 Staff

File system API (a sample)

 The basics: open(), close(), read(), write()
 Permissions: chmod(), chown()
 Metadata: stat(), fstat(), lstat()
 Directories: mkdir(), rmdir(), opendir(),

closedir()

 Links: link(), unlink(), symlink()

20

Copyright ©: University of Illinois CS 241 Staff

Directories

#include <stdio.h>
#include <dirent.h>

int main(int argc, char** argv) {

 struct dirent *e;

 DIR *d = opendir(argv[1]);

 while((e = readdir(d)) != NULL)

 printf("%10d %s\n", e->d_ino, e->d_name);

 closedir(d);
}

Q: What
pieces of

information
does e

contain?

Let’s try it out...

Copyright ©: University of Illinois CS 241 Staff

Take note...

 readdir will return "." and ".."
 readdir returns a pointer to a static

structure
 i.e., not threadsafe, not recursive-safe

 Various other functions to move around in
the directory file (rewinddir, seekdir,
telldir)

Copyright ©: University of Illinois CS 241 Staff

File system API (a sample)

 The basics: open(), close(), read(), write()
 Permissions: chmod(), chown()
 Metadata: stat(), fstat(), lstat()
 Directories: mkdir(), rmdir(), opendir(),

closedir()

 Links: link(), unlink(), symlink()

23

Copyright ©: University of Illinois CS 241 Staff

Links, hard and soft

 int link(const char *path1, const char *path2);

 adds a directory entry
 increments reference count in file’s inode

 int unlink(const char *path);

 removes dir entry, decrements ref count
 if ref count = 0, deletes file

 int symlink(const char *path1, const char *path2);

 adds a directory entry
 creates new file for the soft link

24

Copyright ©: University of Illinois CS 241 Staff

A question.

 What’s the syscall to delete a file?
 unlink!

25

Copyright ©: University of Illinois CS 241 Staff

Let’s try linking some stuff...

26

$./stat stat.c
inode: 9846273
links: 1
size: 326
$ ln stat.c also_stat.c
$./stat stat.c
inode: 9846273
links: 2
size: 326
$./stat also_stat.c
inode: 9846273
links: 2
size: 326
$ ln . thisdir
ln: .: Is a directory

same inode

reference count incremented

Copyright ©: University of Illinois CS 241 Staff

Why can’t I add a link to a dir?

27

Actual situation: FS is
directed acyclic graph

Situation if we could
add links to directories:
FS contains cycles

/a

/

/b

/a/x

/a

/

/b

/a/x

/a

/

/b

/a/x

Copyright ©: University of Illinois CS 241 Staff

Cycles would be confusing

 What’s the ref count at /b (or /a)?
 When will they be deleted?
 Answer: ref count would be 1. The directories are

unreachable (disconnected from the root of the FS) but
would never be removed because ref count > 0.

 Note this problem is similar to garbage collection in prog. languages with
automatic memory management. FS avoids it by avoiding cycles in the
reference graph. 28

Suppose I unlink
/b and /a...

X

X

Copyright ©: University of Illinois CS 241 Staff

One last question...

 What would be a good name for this
function?

29

int __________(char* f) {
 struct stat s1, s2;
 stat(f, &s1);
 lstat(f, &s2);
 return s1.st_ino != s2.st_ino;
}

?
Copyright ©: University of Illinois CS 241 Staff

One last question...

 What would be a good name for this
function?

30

int __________(char* f) {
 struct stat s1, s2;
 stat(f, &s1);
 lstat(f, &s2);
 return s1.st_ino != s2.st_ino;
}

Copyright ©: University of Illinois CS 241 Staff

One last question...

 What would be a good name for this
function?

31

int is_symlink(char* f) {
 struct stat s1, s2;
 stat(f, &s1);
 lstat(f, &s2);
 return s1.st_ino != s2.st_ino;
}

