
Copyright ©: University of Illinois CS 241 Staff

Disks

11

Copyright ©: University of Illinois CS 241 Staff

What we’re covering:
Bottom-up view

 The device: a disk
 Disk scheduling
 Filesystem structures
 User-level: using a filesystem

 Today:
 Finish up disk scheduling
 Filesystem structures

2

Copyright ©: University of Illinois CS 241 Staff

 Average time between bus arrivals is
10 minutes

 If I arrive at a random time, how long
do I expect to wait for the next bus?

 Answer: depends on the pattern of bus
arrivals...

3

A detour: waiting for the bus

Copyright ©: University of Illinois CS 241 Staff

A detour: waiting for the bus

4

tim
e Second bus is essentially useless!

Anyone waiting got on the first bus.

Mean time between buses: 10 min
Time between “bus pairs”: 20 min

On average, we arrive in the
middle of one of these intervals.

So mean waiting time: 10 min

Copyright ©: University of Illinois CS 241 Staff

A detour: waiting for the bus

5

tim
e

A better arrival pattern:
Even spacing between
bus arrivals minimizes
mean waiting time.

Time between buses: 10 min

Mean waiting time: 5 min

Copyright ©: University of Illinois CS 241 Staff

Back to SCAN disk scheduling

6

tim
e

head position
Mean waiting time
for center tracks is
half that of tracks at
either end!

Copyright ©: University of Illinois CS 241 Staff

A fix: C-SCAN (circular SCAN)

7

tim
e

head position
read/write

quick seek to first track

Copyright ©: University of Illinois CS 241 Staff 8

C-SCAN

 Method
 Like SCAN
 But “circle around” to the first track when we

get to the last
 Pros

 Uniform service time
 Cons

 Do nothing on the return to the first track:
some wasted seek time

 (But it’s faster than if we were reading/writing
on the return journey to the first track)

Copyright ©: University of Illinois CS 241 Staff

Filesystems

11

Copyright ©: University of Illinois CS 241 Staff

Key terms

 Sector: unit of allocation on disk
 Block: unit of allocation in filesystem

 could be several segments
 Disk address: index of a block
 inode: structure representing a single

file or directory, including metadata
and pointers to data
 a directory is like a regular file whose

contents happens to be a list of files
10

Disk Layout

 Master boot record
 Partition table (start/end of each partition)
 Active partition
 BIOS reads MBR and boots (loads OS) from active partition

 Boot record
 The first block in partition
 Executable: loads OS

 Followed by file system
 Superblock
 Free list
 File metadata (inodes)
 Files

File system layout

 A typical file system layout
 MBR = master boot record

Copyright ©: University of Illinois CS 241 Staff

Today’s topics

 Allocating blocks for a file on disk
 Contiguous
 Linked list
 Indexed

 Keeping track of free blocks on disk
 Bitmap
 Linked list

13

Allocation of Disk Space

 Low level access methods depend
upon the disk allocation scheme used
to store file data

 Contiguous
 Linked list
 Indexed

Contiguous Allocation

Contiguous Allocation
advantages

 Access method suits sequential and direct access
 Easy to recover in event of system crash
 Fast, often requires no head movement and when

it does, head only moves one track

Contiguous Allocation
problems

 Expanding the file requires copying
 Dynamic storage allocation - first fit, best fit
 External fragmentation occurs on disk

Linked Allocation

Linked List Allocation

 Each file is a linked list of chunks
 Pointers in list are not accessible to user
 Directory table maps files into head of list for a file
 A node in the list can be a fixed size physical block

or a contiguous collection of blocks
 Easy to use - no estimation of size necessary

Linked List Allocation

 Advantages
 Can grow in middle and at ends
 Space efficient, little fragmentation

 Disadvantages
 Slow for random (“direct”) access: need to read

through linked list nodes sequentially to find
record of interest blocks

 Suited for sequential access

Linked List Allocation Issues

 Disk space must be used to store pointers (if disk
block is 512 bytes, and disk address requires 4
bytes, then the user sees blocks of 508 bytes)

 Not very reliable. System crashes can scramble
files being updated

 Important variation on linked allocation method:
`file-allocation table' (FAT) - OS/2 and MS-DOS
 Pull all linked list pointers to one part of the disk
 Faster than reading one block at a time to scan

through file

Linked List Allocation Issues

 Summary: linked allocation solves the
external fragmentation and size-
declaration problems of contiguous
allocation,

 However, it can't support efficient direct
access

#3. Indexed Allocation

Indexed Allocation

 Solves external fragmentation
 Supports sequential and direct access
 Access requires at most one access to

index block first. This can be cached in
main memory

Indexed Allocation

 File can be extended by rewriting a
few blocks and index block

 Requires extra space for index
 What if we have a big file whose

blocks can’t all be listed in a single
index block?

Big file solution 1:
Linked Indexed Files

Link full index blocks
together using last
entry.

Multilevel Indexed File

 Multiple levels of index blocks

Multilevel indexed example:
UNIX inodes

Metadata (size, permissions,
timestamps, ...)

Direct block pointer

Direct block pointer

Direct block pointer

...

Direct block pointer

single indirect

double indirect

triple indirect

...

data block

data block

data block

data block
data block

data block

...

...

...

data block

data block

data block

data block...

Free Space Management

 When we want to add a block to a file, how
do we find a free one?
 (does this sound familiar...?)

Option #1: bit vector

 A bit map is kept of free blocks
 Each bit in a vector represents one block
 If the block is free, the bit is zero
 Simple to find n consecutive free blocks
 Overhead is bit map
 Example: BSD file system

Option #2: free list

 Keep a linked list of free blocks
 Not very efficient to traverse linked list
 But typical operation is just to add/

remove the first element: no traversal

 Which one needs more space: bit map
or linked list?

Option #2: free list

 Keep a linked list of free blocks
 Not very efficient to traverse linked list

 E.g., we need to read a whole block
just to update the list head pointer

 Question to ponder: Which one needs
more space -- bit map or linked list?

 Linked list of indices
 A linked list of index blocks is kept
 Each index block contains addresses of

free blocks and a
 Pointer to the next index block

 A large number of free blocks can be
found quickly

Option #2a: list of indices

 Linked list of contiguous blocks that are
free

 The free list node consists of a pointer and the
number of free blocks starting from that
address

 Blocks are joined together into larger blocks
as necessary

Variation: list of contiguous
free blocks

Final word

 There are many optimizations implemented
in filesystems!

 7500 RPM drive will take 4 ms just for mean
rotational delay

 How many instructions does a 2 GHz
processor execute in that time?
 8,000,000

 Conclusion: Disk is the bottleneck. Even
complex optimizations may be worthwhile.

35

Copyright ©: University of Illinois CS 241 Staff

HW3 Part 4 Question C

 The question is supposed to ask for
the total time spent seeking, not the
total time overall. In other words,
ignore rotational delay and read time.

36

