
Copyright ©: University of Illinois CS 241 Staff

Disks

11

Copyright ©: University of Illinois CS 241 Staff

What we’re covering:
Bottom-up view

 The device: a disk
 Disk scheduling
 Filesystem structures
 User-level: using a filesystem

 Today:
 Finish up disk scheduling
 Filesystem structures

2

Copyright ©: University of Illinois CS 241 Staff

 Average time between bus arrivals is
10 minutes

 If I arrive at a random time, how long
do I expect to wait for the next bus?

 Answer: depends on the pattern of bus
arrivals...

3

A detour: waiting for the bus

Copyright ©: University of Illinois CS 241 Staff

A detour: waiting for the bus

4

tim
e Second bus is essentially useless!

Anyone waiting got on the first bus.

Mean time between buses: 10 min
Time between “bus pairs”: 20 min

On average, we arrive in the
middle of one of these intervals.

So mean waiting time: 10 min

Copyright ©: University of Illinois CS 241 Staff

A detour: waiting for the bus

5

tim
e

A better arrival pattern:
Even spacing between
bus arrivals minimizes
mean waiting time.

Time between buses: 10 min

Mean waiting time: 5 min

Copyright ©: University of Illinois CS 241 Staff

Back to SCAN disk scheduling

6

tim
e

head position
Mean waiting time
for center tracks is
half that of tracks at
either end!

Copyright ©: University of Illinois CS 241 Staff

A fix: C-SCAN (circular SCAN)

7

tim
e

head position
read/write

quick seek to first track

Copyright ©: University of Illinois CS 241 Staff 8

C-SCAN

 Method
 Like SCAN
 But “circle around” to the first track when we

get to the last
 Pros

 Uniform service time
 Cons

 Do nothing on the return to the first track:
some wasted seek time

 (But it’s faster than if we were reading/writing
on the return journey to the first track)

Copyright ©: University of Illinois CS 241 Staff

Filesystems

11

Copyright ©: University of Illinois CS 241 Staff

Key terms

 Sector: unit of allocation on disk
 Block: unit of allocation in filesystem

 could be several segments
 Disk address: index of a block
 inode: structure representing a single

file or directory, including metadata
and pointers to data
 a directory is like a regular file whose

contents happens to be a list of files
10

Disk Layout

 Master boot record
 Partition table (start/end of each partition)
 Active partition
 BIOS reads MBR and boots (loads OS) from active partition

 Boot record
 The first block in partition
 Executable: loads OS

 Followed by file system
 Superblock
 Free list
 File metadata (inodes)
 Files

File system layout

 A typical file system layout
 MBR = master boot record

Copyright ©: University of Illinois CS 241 Staff

Today’s topics

 Allocating blocks for a file on disk
 Contiguous
 Linked list
 Indexed

 Keeping track of free blocks on disk
 Bitmap
 Linked list

13

Allocation of Disk Space

 Low level access methods depend
upon the disk allocation scheme used
to store file data

 Contiguous
 Linked list
 Indexed

Contiguous Allocation

Contiguous Allocation
advantages

 Access method suits sequential and direct access
 Easy to recover in event of system crash
 Fast, often requires no head movement and when

it does, head only moves one track

Contiguous Allocation
problems

 Expanding the file requires copying
 Dynamic storage allocation - first fit, best fit
 External fragmentation occurs on disk

Linked Allocation

Linked List Allocation

 Each file is a linked list of chunks
 Pointers in list are not accessible to user
 Directory table maps files into head of list for a file
 A node in the list can be a fixed size physical block

or a contiguous collection of blocks
 Easy to use - no estimation of size necessary

Linked List Allocation

 Advantages
 Can grow in middle and at ends
 Space efficient, little fragmentation

 Disadvantages
 Slow for random (“direct”) access: need to read

through linked list nodes sequentially to find
record of interest blocks

 Suited for sequential access

Linked List Allocation Issues

 Disk space must be used to store pointers (if disk
block is 512 bytes, and disk address requires 4
bytes, then the user sees blocks of 508 bytes)

 Not very reliable. System crashes can scramble
files being updated

 Important variation on linked allocation method:
`file-allocation table' (FAT) - OS/2 and MS-DOS
 Pull all linked list pointers to one part of the disk
 Faster than reading one block at a time to scan

through file

Linked List Allocation Issues

 Summary: linked allocation solves the
external fragmentation and size-
declaration problems of contiguous
allocation,

 However, it can't support efficient direct
access

#3. Indexed Allocation

Indexed Allocation

 Solves external fragmentation
 Supports sequential and direct access
 Access requires at most one access to

index block first. This can be cached in
main memory

Indexed Allocation

 File can be extended by rewriting a
few blocks and index block

 Requires extra space for index
 What if we have a big file whose

blocks can’t all be listed in a single
index block?

Big file solution 1:
Linked Indexed Files

Link full index blocks
together using last
entry.

Multilevel Indexed File

 Multiple levels of index blocks

Multilevel indexed example:
UNIX inodes

Metadata (size, permissions,
timestamps, ...)

Direct block pointer

Direct block pointer

Direct block pointer

...

Direct block pointer

single indirect

double indirect

triple indirect

...

data block

data block

data block

data block
data block

data block

...

...

...

data block

data block

data block

data block...

Free Space Management

 When we want to add a block to a file, how
do we find a free one?
 (does this sound familiar...?)

Option #1: bit vector

 A bit map is kept of free blocks
 Each bit in a vector represents one block
 If the block is free, the bit is zero
 Simple to find n consecutive free blocks
 Overhead is bit map
 Example: BSD file system

Option #2: free list

 Keep a linked list of free blocks
 Not very efficient to traverse linked list
 But typical operation is just to add/

remove the first element: no traversal

 Which one needs more space: bit map
or linked list?

Option #2: free list

 Keep a linked list of free blocks
 Not very efficient to traverse linked list

 E.g., we need to read a whole block
just to update the list head pointer

 Question to ponder: Which one needs
more space -- bit map or linked list?

 Linked list of indices
 A linked list of index blocks is kept
 Each index block contains addresses of

free blocks and a
 Pointer to the next index block

 A large number of free blocks can be
found quickly

Option #2a: list of indices

 Linked list of contiguous blocks that are
free

 The free list node consists of a pointer and the
number of free blocks starting from that
address

 Blocks are joined together into larger blocks
as necessary

Variation: list of contiguous
free blocks

Final word

 There are many optimizations implemented
in filesystems!

 7500 RPM drive will take 4 ms just for mean
rotational delay

 How many instructions does a 2 GHz
processor execute in that time?
 8,000,000

 Conclusion: Disk is the bottleneck. Even
complex optimizations may be worthwhile.

35

Copyright ©: University of Illinois CS 241 Staff

HW3 Part 4 Question C

 The question is supposed to ask for
the total time spent seeking, not the
total time overall. In other words,
ignore rotational delay and read time.

36

