
Copyright ©: University of Illinois CS 241 Staff

I/O = Input/Output Devices

11

Copyright ©: University of Illinois CS 241 Staff

How to converse with devices

 Polling
 CPU issues I/O command
 CPU directly writes instructions into device’s registers
 CPU busy waits for completion

 Interrupt-driven I/O
 CPU issues I/O command
 CPU directly writes instructions into device’s registers
 CPU continues operation until interrupt

 This time: Direct Memory Access (DMA)
 CPU asks DMA controller to perform device-to-memory transfer
 DMA issues I/O command and transfers new item into memory
 CPU module is interrupted after completion

18

Copyright ©: University of Illinois CS 241 Staff

Direct Memory Access (DMA)

 Means what it says!
 Involves special hardware element: DMA

controller
 Assists in direct exchange of data between

main memory and I/O controller
 More efficient than CPU requesting data

from I/O controller byte by byte, e.g., for
block devices like disks

29

Copyright ©: University of Illinois CS 241 Staff

The DMA-CPU Protocol

1. Device driver (on CPU) programs DMA controller
 Sets registers to specify source/destination addresses,

byte count and control information (e.g., read/write). Then
continues with other work.

2. DMA controller tells I/O controller to directly move
data to memory via bus, without involving the CPU

3. Disk controller transfers data to main memory
4. Disk controller ACKs transfer to DMA controller
5. DMA controller sends interrupt back to CPU

30

Copyright ©: University of Illinois CS 241 Staff 31

Direct Memory Access (DMA)

address

count

control

CPU
DMA

Controller
Disk

Controller
Main

Memory

1. CPU
programs
the DMA
controller

Buffer

5. Interrupt
when done

2. DMA requests
transfer to
memory

3. Data
transferred

4. ACK

Copyright ©: University of Illinois CS 241 Staff

DMA

 Driver operation to input sequence of chars

write_reg(mm_buf, m);
write_reg(count, n);
write_reg(opcode, read);
block to wait for interrupt;

 Writing opcode triggers DMA controller
 DMA controller issues interrupt after n chars

in memory
32

Copyright ©: University of Illinois CS 241 Staff

What’s the catch?

 Handshaking between DMA controller and the
device controller

 Can the CPU execute as normal during transfer?
 Bus is shared by DMA controller and CPU
 DMA controller takes away CPU cycles when it uses bus,

hence blocks CPU from accessing memory
 Not an interrupt: CPU does not switch context
 Causes the CPU to execute more slowly: “cycle stealing”

 But in general DMA controller improves the total
system performance

33

Copyright ©: University of Illinois CS 241 Staff

Discussion

 Tradeoffs between
 Polling I/O
 Interrupt-driven I/O
 I/O using DMA

 Which is fastest for a single I/O request that takes a
very short time?

 Which is fastest for a single I/O request that takes a
very long time?

 Which one gives the highest throughput?

34

Copyright ©: University of Illinois CS 241 Staff

Device Drivers

 Logical position
of device drivers

 Communications
between device
driver and device
controllers goes
over the bus

35

Rest of the operating system

Printer
driver

Camera
driver

CD-ROM
driver

Printer
controller

Camera
controller

CD-ROM
controller

User
programUser

space

Kernel
space

Hardware

Devices

Copyright ©: University of Illinois CS 241 Staff

Device Drivers

 Device-specific code to control an IO device
 Typically written by device's manufacturer
 Controller has some device registers used to

give it commands.
 Number of device registers and the nature of

commands vary from device to device
 Mouse driver accepts information from the mouse

about how far it has moved
 Disk driver has to know about sectors, tracks, heads,

etc).

36

Copyright ©: University of Illinois CS 241 Staff

Device Drivers

 Typically part of the OS kernel
 Compiled with the OS
 Dynamically loaded into the OS during execution
 But in microkernel, drivers can run in user space

 Each device driver handles
 One device type (mouse, disk, etc.)
 Or one class of closely related devices

 SCSI disk driver to handle multiple disks of different sizes
and different speeds

 Categories
 Block devices
 Character devices

37

Copyright ©: University of Illinois CS 241 Staff

Functions of Device Drivers

 Initialize the device
 Accept abstract read and write requests from the device-

independent layer above
 Manage power requirements and log events
 Check to ensure input parameters are valid
 Translate valid input from abstract to concrete terms

 e.g., convert linear block number into the head, track, sector and
cylinder number for disk access

 Check the device if it is in use (i.e., check the status bit)
 Control the device by issuing a sequence of commands. The

driver determines what commands will be issued.

38

Copyright ©: University of Illinois CS 241 Staff

Error Reporting

 Programming I/O Errors
 occur when a process asks for something impossible
 e.g., write to an input device such as keyboard, or read from

output device such as printer
 Report back an error to the caller

 Actual I/O Errors
 occur at the device level
 e.g., read disk block that has been damaged, or try to read from

video camera which is switched off
 Report back to the device-independent software

 The device-independent I/O software detects these errors and
responds to them by reporting to the process

46

Copyright ©: University of Illinois CS 241 Staff

Disks

11

Copyright ©: University of Illinois CS 241 Staff

What we’ll cover:
Bottom-up view

 The device: a disk
 Disk scheduling
 Filesystem structures
 User-level: using a filesystem

15

Copyright ©: University of Illinois CS 241 Staff

A disk

16

http://www.youtube.com/watch?v=9eMWG3fwiEU

http://www.youtube.com/watch?v=9eMWG3fwiEU
http://www.youtube.com/watch?v=9eMWG3fwiEU

Copyright ©: University of Illinois CS 241 Staff 17

Disk Examples (Summarized Specs)

Copyright ©: University of Illinois CS 241 Staff 18

Detailed view of a disk

Copyright ©: University of Illinois CS 241 Staff 19

Disk Scheduling

Seek time

Rotation time

Transfer time

Three steps in reading a sector:

Avg rotation time =
½ rotation time

Transfer time =
(sector size)/(transfer speed)

Copyright ©: University of Illinois CS 241 Staff 20

Disk Performance Factor: Seeking

 Seeking: position the head to the desired cylinder
 Takes roughly 2-5ms

 Seeking speed depends on:
 The power available for the pivot motor

 halving the seek time requires quadrupling the power
 The arm’s stiffness

 Accelerations of 30-40g are required to achieve good seek times,
and too flexible an arm can twist and bring the head into contact
with the platter surface.

 A seek is composed of
 A speedup, a coast, a slowdown, a settle
 For very short seeks, the settle time dominates (1-3ms)

Copyright ©: University of Illinois CS 241 Staff 21

Disk Performance:
Other Factors

 Rotational delay
 Wait for a sector to rotate underneath the heads
 Typically 8.3 − 6.0ms (7,200 – 10,000RPM) or ½ rotation takes

4.15-3ms
 Transfer bytes

 Average transfer bandwidth (15-37 MB/sec)
 Suppose: seek=5.3ms, rotational delay=6ms, Transfer

speed = 25MBps
 What is the effective bandwidth for transferring sector of 1

Kbytes?
 Seek (5.3 ms) + half rotational delay (3ms) + transfer (1KB/

25MBps=0.04 ms)
 Total time is 8.34ms. Effective BW = 1KB/8.34ms=120 KB/sec!

 What block size can get 90% of the disk transfer bandwidth?

Copyright ©: University of Illinois CS 241 Staff 22

Disk Behaviors

 Seek time and rotational latency dominates the cost of
small reads

 There are more sectors on outer tracks than inner tracks
 Read outer tracks: 37.4MB/sec
 Read inner tracks: 22MB/sec

Block Size % of Disk Transfer Bandwidth

1 KB 0.5%
8 KB 3.7%

256 KB 55%
1 MB 83%
2 MB 90%

Copyright ©: University of Illinois CS 241 Staff 23

So, how do you speed up disk
transfer speed?

 Increase block size
 What else?

Copyright ©: University of Illinois CS 241 Staff 24

Disk Scheduling!

 Given a queue of waiting requests for disk
accesses (from various processes)

 Which disk request is serviced first?
 FCFS
 Shortest seek time first
 Elevator (SCAN)
 C-SCAN (Circular SCAN)

 Implemented inside device driver

Copyright ©: University of Illinois CS 241 Staff 25

Disk Scheduling - FIFO

Copyright ©: University of Illinois CS 241 Staff 26

FIFO (FCFS) order
 Method

 Queue of IO requests held by device driver
 Dispatched in First come first serve order

 Pros
 Fairness among requests
 In the order applications expect

 Cons
 Arrival may be on random spots on the disk (long seeks)
 Wild swings can happen

 Analogy: What would FCFS elevator scheduling look like?

 Example: Start from track 49, serve
requests at tracks 45, 47, 50, 52, 58,
60, and 61. In what order are they
served?

Copyright ©: University of Illinois CS 241 Staff 27

Scheduling – Shortest Seek
Time First (SSTF)

50 52 47 45 58 60 61

Copyright ©: University of Illinois CS 241 Staff 28

SSTF (Shortest Seek Time First)

 Method
 Pick the request closest on

disk to current position of
head

 Pros
 Tries to minimize seek time

 Cons
 Starvation – why?

 Question
 Is SSTF optimal?
 Can we avoid starvation?

Copyright ©: University of Illinois CS 241 Staff 29

Scheduling - Scan

 Move head from one side to other side, serving
all requests on the way. Then, go reverse way
doing the same.

 Requests that arrived too late while scanning in
one direction will be served in reverse direction

Copyright ©: University of Illinois CS 241 Staff 30

Elevator (SCAN)

 Method
 Take the closest request in the direction of travel
 Reverse direction at end of disk

 Pros
 Bounded time for each request

 Cons
 Request at the other end may take a while to get to
 Requests near the center tend to have lower delay

 Why?

Copyright ©: University of Illinois CS 241 Staff 31

Scheduling – Circular Scan (C-
SCAN)

 Move head from side to side serving all
requests in one direction only

 Requests that arrived too late for one
scan will be served on the next

Copyright ©: University of Illinois CS 241 Staff 32

C-SCAN

 Method
 Like SCAN
 But wrap around

 Pros
 Uniform service time

 Cons
 Do nothing on the

return

