
Copyright ©: University of Illinois CS 241 Staff

I/O = Input/Output Devices

11

Copyright ©: University of Illinois CS 241 Staff

MP7

2

int main()
{
 int *ptr = malloc(sizeof(int));

 *ptr = 4;
 free(ptr);

 printf("Memory was allocated, used, and freed!\n");
 return 0;
}

Copyright ©: University of Illinois CS 241 Staff

MP7

3

int main()
{
 int *ptr = malloc(sizeof(int));

 *ptr = 4;
 free(ptr);

 printf("Memory was allocated, used, and freed!\n");
 return 0;
}

Copyright ©: University of Illinois CS 241 Staff

Super-simple malloc

4

void* malloc(size_t size) {
 return sbrk(size);
}

void free(void* ptr) {
}

What does memory allocation look like with Super-Simple malloc?

all memory

heap
start

heap
end

The holes are wasted memory,
allocated to the program but unused!

Copyright ©: University of Illinois CS 241 Staff

Keeping track of allocated and
free memory segments

 Need some data structure (list, array,
tree, ...) to track all segments

 One clever way:

 ...but it’s all up to you!
5

full allocated segment

returned to callermeta-
data

Copyright ©: University of Illinois CS 241 Staff

...and away you go

 Try it out with programs yourself
 We’ll test based on

 Average heap size
 Max heap size
 Execution time

 Fabulous prizes await you!
 Contest details announced on Monday
 Everyone who submits the MP

participates, but anonymous by default
6

Copyright ©: University of Illinois CS 241 Staff

I/O = Input/Output Devices

11

(for real this time!)

Copyright ©: University of Illinois CS 241 Staff

Overview

 Basic I/O hardware
 ports, buses, devices and controllers

 I/O Software
 Interrupt Handlers, Device Driver, Device-

Independent Software, User-Space I/O Software
 Important concepts

 Three ways to perform I/O operations
 Programmed I/O, Interrupt and DMAs

2

Copyright ©: University of Illinois CS 241 Staff 3

I/O Software Layers

Layers of the I/O Software System

User-level I/O Software

Device-independent Operating System Software

Device Drivers

Interrupt Handlers

Hardware

Copyright ©: University of Illinois CS 241 Staff

Devices

 Storage devices
 Disk, tapes

 Transmission/Communication devices
 Network card, modem

 Human interface devices
 Screen, keyboard, mouse

 Specialized devices
 Joystick

4

Copyright ©: University of Illinois CS 241 Staff

Input/Output Problems

 Wide variety of peripherals (external
devices)
 Delivering different amounts of data
 At different speeds
 In different formats

 All slower than CPU and RAM
 Need I/O modules

5

Copyright ©: University of Illinois CS 241 Staff

I/O Device Characteristics

 Application usage
 Disk for storing files or virtual memory pages

 Complexity of control
 Simple vs. complex

 Data representation
 Diversity of encoding schemes

 Error conditions
 Devices respond to errors differently

6

Copyright ©: University of Illinois CS 241 Staff

I/O Device Characteristics

 Unit of transfer
 Data may be transferred as a stream of bytes for a

terminal or in larger blocks for a disk
 Block devices

 Disk drives
 Commands include read, write, seek
 Raw I/O or file-system access
 Memory-mapped file access possible

 Character devices
 Keyboards, mice, serial ports
 Commands include get, put
 Libraries layered on top allow line editing

7

Copyright ©: University of Illinois CS 241 Staff

I/O Device Characteristics

 Data rate
 May be differences of several orders of

magnitude between the data transfer rates

8

Copyright ©: University of Illinois CS 241 Staff 9

Typical I/O Device Data Rates

[Fig. from Silberschatz & Galvin]

Copyright ©: University of Illinois CS 241 Staff

Need some abstraction to deal
with all this complexity!

16

Kernel

App App App App App

I/O Subsystem

SCSI
driver

keyboard
driver

mouse
driver

PCI-X
bus

wireless
driver

truck
driver

SCSI
controller

keyboard
controller

mouse
controller

PCI-X
controller

Wireless
controller

steering
wheel

D
i
s
k

Keyboard Mouse Graphics
card

Wireless
network

card
truck

D
i
s
k

So
ft

w
ar

e
H

ar
dw

ar
e

Copyright ©: University of Illinois CS 241 Staff

 Kernel provides several abstractions
that can represent many kinds of
devices, such as:
 block I/O (files)
 character stream I/O (keyboard)
 memory-mapped files
 network sockets
 ioctl for everything else

17

Need some abstraction to deal
with all this complexity!

Copyright ©: University of Illinois CS 241 Staff

But first...
Hardware-software interface

 Device controller
 A hardware element
 Accepts simple device hardware

instructions into registers to read and
write data

 Device driver
 Part of the OS that runs in software on

the CPU
 Makes calls to the device controller

10

Copyright ©: University of Illinois CS 241 Staff

Device controller

 I/O units typically consist of
 Mechanical component

 The device itself
 Electronic component

 The device controller or adapter

 Interface between controller and device is a very
low level interface

 Example: Disk controller
 Take serial bit streams coming off the drive
 Convert into a block of bytes
 Perform error correction
 Caching

11

Copyright ©: University of Illinois CS 241 Staff

Device controller

 Controller has I/O registers/ports for data
and control

 CPU and controllers communicate via
 I/O instructions and registers
 Interrupts
 Memory-mapped I/O

12

Copyright ©: University of Illinois CS 241 Staff

I/O Registers/Ports

 4 registers, 1 to 4 bytes
 Status

 Whether the current command is completed, byte is
available, device has an error, etc.

 Control
 Host determines to start a command or change the

mode of a device
 Data-in

 Host reads to get input
 Data-out

 Host writes to send output

13

Copyright ©: University of Illinois CS 241 Staff

I/O Registers/Ports

 Instructions and Data
 Format is device-dependent
 Device driver code needs to be aware of this

format
 Each device from each vendor typically needs a

separate device driver

 How should the CPU communicate with the
control registers and the data buffer?

14

Copyright ©: University of Illinois CS 241 Staff

How to converse with devices

 Polling
 CPU issues I/O command
 CPU directly writes instructions into device’s registers
 CPU busy waits for completion

 Interrupt-driven I/O
 CPU issues I/O command
 CPU directly writes instructions into device’s registers
 CPU continues operation until interrupt

 Direct Memory Access (DMA)
 CPU asks DMA controller to perform device-to-memory transfer
 DMA issues I/O command and transfers new item into memory
 CPU module is interrupted after completion

18

Copyright ©: University of Illinois CS 241 Staff

Polling

 Polling sequence:
1. CPU requests I/O operation
2. I/O module performs operation
3. I/O module sets status bits
4. CPU checks status bits periodically

 I/O module does not inform CPU directly
 I/O module does not interrupt CPU
 CPU may wait or come back later

 Also called “Programmed I/O”: each piece of I/O
data is transferred by a program (kernel), not
hardware 19

Copyright ©: University of Illinois CS 241 Staff

Polling

 Driver operation to input sequence of chars

i = 0;
while (…) {
 write_reg(opcode, read);
 while (busy_flag == true); /* wait */
 buffer[i] = data_buffer;
 i++;
 compute;
}

20

Copyright ©: University of Illinois CS 241 Staff

Polling

 Expensive for large
transfers
 What devices make

large transfers?
 What devices make

small transfers?

 Acceptable only if
 Small dedicated system
 Not too few processes
 Character devices (as

opposed to block
devices)

21

Copyright ©: University of Illinois CS 241 Staff

Interrupt-driven I/O

 Approach
1. CPU issues read command
2. I/O controller gets data while CPU does other work
3. I/O controller interrupts CPU
4. CPU requests data
5. I/O controller transfers data

 Advantage: Overcomes CPU busy waiting loops
 No repeated CPU checking of device
 I/O module interrupts when ready: Event-driven!

 But, like polling, it’s still “Programmed I/O”

22

Copyright ©: University of Illinois CS 241 Staff

Interrupt-driven I/O

 Connections between devices and interrupt controller use shared
interrupt lines on the bus rather than dedicated wires

23

Key Idea: Inform device controller of IO request, go to blocked state,
wait for device to finish request

CPU
Interrupt

Controller
1. Device is finished

2. Controller
 issues
 interrupt

3. CPU ACKs
 interrupt

Copyright ©: University of Illinois CS 241 Staff

Interrupt-driven I/O

 Driver operation to input sequence of chars

i = 0;
while (…) {
 write_reg(opcode, read);
 block to wait for interrupt;
 buffer[i] = data_buffer;
 i++;
 compute;
}

24

while (busy_flag == true);
was:

Copyright ©: University of Illinois CS 241 Staff

Host-controller interface:
Interrupts

 CPU hardware has an interrupt report line that the
CPU tests after executing every instruction
 If a(ny) device raises an interrupt by setting interrupt

report line
 CPU catches the interrupt and saves the state of current running

process into PCB
 CPU dispatches/starts the interrupt handler
 Interrupt handler determines cause, services the device and clears

the interrupt report line

 Real life analogy for interrupts
 An alarm sets off when the food/laundry is ready
 So you can do other things in between

25

Copyright ©: University of Illinois CS 241 Staff

Support for Interrupts

 Need the ability to defer interrupt handling during
critical processing
 Why?

 Need efficient way to dispatch the proper interrupt
handler
 Interrupt comes with an id
 Interrupt vector maintains addresses of interrupt handler

functions (one per device) – an array of function pointers
 Id is index into vector of device driver functions

 Need multilevel interrupts - interrupt priority level
 Some interrupts more important than others, e.g., clock

more than network
26

Copyright ©: University of Illinois CS 241 Staff

Interrupt Handler

 Discovery
 At boot time, OS probes the hardware

buses to
 Determine what devices are present
 Install corresponding interrupt handlers into

the interrupt vector
 During I/O interrupt

 Device controller implicitly signals that
device is ready for next request

27

Copyright ©: University of Illinois CS 241 Staff

Other Uses of Interrupts

 Besides I/O devices
 Interrupt mechanisms are used to

handle a wide variety of exceptions:
 Division by zero, wrong address
 System calls (software interrupts/signals,

trap)
 Multi-threaded systems

 Examples?
 Virtual memory paging

28

Copyright ©: University of Illinois CS 241 Staff

How to converse with devices

 Polling
 CPU issues I/O command
 CPU directly writes instructions into device’s registers
 CPU busy waits for completion

 Interrupt-driven I/O
 CPU issues I/O command
 CPU directly writes instructions into device’s registers
 CPU continues operation until interrupt

 Next time: Direct Memory Access (DMA)
 CPU asks DMA controller to perform device-to-memory transfer
 DMA issues I/O command and transfers new item into memory
 CPU module is interrupted after completion

18

