
Copyright ©: University of Illinois CS 241 Staff

I/O = Input/Output Devices

11

Copyright ©: University of Illinois CS 241 Staff

MP7

2

int main()
{

 int *ptr = malloc(sizeof(int));

 *ptr = 4;

 free(ptr);

 printf("Memory was allocated, used, and freed!\n");

 return 0;
}

Copyright ©: University of Illinois CS 241 Staff

MP7

3

int main()
{

 int *ptr = malloc(sizeof(int));

 *ptr = 4;

 free(ptr);

 printf("Memory was allocated, used, and freed!\n");

 return 0;
}

Copyright ©: University of Illinois CS 241 Staff

Super-simple malloc

4

void* malloc(size_t size) {
 return sbrk(size);
}

void free(void* ptr) {
}

What does memory allocation look like with Super-Simple malloc?

all memory

heap
start

heap
end

The holes are wasted memory,
allocated to the program but unused!

Copyright ©: University of Illinois CS 241 Staff

Keeping track of allocated and
free memory segments

 Need some data structure (list, array,
tree, ...) to track all segments

 One clever way:

 ...but it’s all up to you!
5

full allocated segment

returned to callermeta-
data

Copyright ©: University of Illinois CS 241 Staff

...and away you go

 Try it out with programs yourself
 We’ll test based on

 Average heap size
 Max heap size
 Execution time

 Fabulous prizes await you!
 Contest details announced on Monday
 Everyone who submits the MP

participates, but anonymous by default
6

Copyright ©: University of Illinois CS 241 Staff

I/O = Input/Output Devices

11

(for real this time!)

Copyright ©: University of Illinois CS 241 Staff

Overview

 Basic I/O hardware
 ports, buses, devices and controllers

 I/O Software
 Interrupt Handlers, Device Driver, Device-

Independent Software, User-Space I/O Software
 Important concepts

 Three ways to perform I/O operations
 Programmed I/O, Interrupt and DMAs

2

Copyright ©: University of Illinois CS 241 Staff 3

I/O Software Layers

Layers of the I/O Software System

User-level I/O Software

Device-independent Operating System Software

Device Drivers

Interrupt Handlers

Hardware

Copyright ©: University of Illinois CS 241 Staff

Devices

 Storage devices
 Disk, tapes

 Transmission/Communication devices
 Network card, modem

 Human interface devices
 Screen, keyboard, mouse

 Specialized devices
 Joystick

4

Copyright ©: University of Illinois CS 241 Staff

Input/Output Problems

 Wide variety of peripherals (external
devices)
 Delivering different amounts of data
 At different speeds
 In different formats

 All slower than CPU and RAM
 Need I/O modules

5

Copyright ©: University of Illinois CS 241 Staff

I/O Device Characteristics

 Application usage
 Disk for storing files or virtual memory pages

 Complexity of control
 Simple vs. complex

 Data representation
 Diversity of encoding schemes

 Error conditions
 Devices respond to errors differently

6

Copyright ©: University of Illinois CS 241 Staff

I/O Device Characteristics

 Unit of transfer
 Data may be transferred as a stream of bytes for a

terminal or in larger blocks for a disk
 Block devices

 Disk drives
 Commands include read, write, seek
 Raw I/O or file-system access
 Memory-mapped file access possible

 Character devices
 Keyboards, mice, serial ports
 Commands include get, put
 Libraries layered on top allow line editing

7

Copyright ©: University of Illinois CS 241 Staff

I/O Device Characteristics

 Data rate
 May be differences of several orders of

magnitude between the data transfer rates

8

Copyright ©: University of Illinois CS 241 Staff 9

Typical I/O Device Data Rates

[Fig. from Silberschatz & Galvin]

Copyright ©: University of Illinois CS 241 Staff

Need some abstraction to deal
with all this complexity!

16

Kernel

App App App App App

I/O Subsystem

SCSI
driver

keyboard
driver

mouse
driver

PCI-X
bus

wireless
driver

truck
driver

SCSI
controller

keyboard
controller

mouse
controller

PCI-X
controller

Wireless
controller

steering
wheel

D
i
s
k

Keyboard Mouse Graphics
card

Wireless
network

card
truck

D
i
s
k

So
ft

w
ar

e
H

ar
dw

ar
e

Copyright ©: University of Illinois CS 241 Staff

 Kernel provides several abstractions
that can represent many kinds of
devices, such as:
 block I/O (files)
 character stream I/O (keyboard)
 memory-mapped files
 network sockets
 ioctl for everything else

17

Need some abstraction to deal
with all this complexity!

Copyright ©: University of Illinois CS 241 Staff

But first...
Hardware-software interface

 Device controller
 A hardware element
 Accepts simple device hardware

instructions into registers to read and
write data

 Device driver
 Part of the OS that runs in software on

the CPU
 Makes calls to the device controller

10

Copyright ©: University of Illinois CS 241 Staff

Device controller

 I/O units typically consist of
 Mechanical component

 The device itself
 Electronic component

 The device controller or adapter

 Interface between controller and device is a very
low level interface

 Example: Disk controller
 Take serial bit streams coming off the drive
 Convert into a block of bytes
 Perform error correction
 Caching

11

Copyright ©: University of Illinois CS 241 Staff

Device controller

 Controller has I/O registers/ports for data
and control

 CPU and controllers communicate via
 I/O instructions and registers
 Interrupts
 Memory-mapped I/O

12

Copyright ©: University of Illinois CS 241 Staff

I/O Registers/Ports

 4 registers, 1 to 4 bytes
 Status

 Whether the current command is completed, byte is
available, device has an error, etc.

 Control
 Host determines to start a command or change the

mode of a device
 Data-in

 Host reads to get input
 Data-out

 Host writes to send output

13

Copyright ©: University of Illinois CS 241 Staff

I/O Registers/Ports

 Instructions and Data
 Format is device-dependent
 Device driver code needs to be aware of this

format
 Each device from each vendor typically needs a

separate device driver

 How should the CPU communicate with the
control registers and the data buffer?

14

Copyright ©: University of Illinois CS 241 Staff

How to converse with devices

 Polling
 CPU issues I/O command
 CPU directly writes instructions into device’s registers
 CPU busy waits for completion

 Interrupt-driven I/O
 CPU issues I/O command
 CPU directly writes instructions into device’s registers
 CPU continues operation until interrupt

 Direct Memory Access (DMA)
 CPU asks DMA controller to perform device-to-memory transfer
 DMA issues I/O command and transfers new item into memory
 CPU module is interrupted after completion

18

Copyright ©: University of Illinois CS 241 Staff

Polling

 Polling sequence:
1. CPU requests I/O operation
2. I/O module performs operation
3. I/O module sets status bits
4. CPU checks status bits periodically

 I/O module does not inform CPU directly
 I/O module does not interrupt CPU
 CPU may wait or come back later

 Also called “Programmed I/O”: each piece of I/O
data is transferred by a program (kernel), not
hardware 19

Copyright ©: University of Illinois CS 241 Staff

Polling

 Driver operation to input sequence of chars

i = 0;
while (…) {
 write_reg(opcode, read);
 while (busy_flag == true); /* wait */
 buffer[i] = data_buffer;
 i++;
 compute;
}

20

Copyright ©: University of Illinois CS 241 Staff

Polling

 Expensive for large
transfers
 What devices make

large transfers?
 What devices make

small transfers?

 Acceptable only if
 Small dedicated system
 Not too few processes
 Character devices (as

opposed to block
devices)

21

Copyright ©: University of Illinois CS 241 Staff

Interrupt-driven I/O

 Approach
1. CPU issues read command
2. I/O controller gets data while CPU does other work
3. I/O controller interrupts CPU
4. CPU requests data
5. I/O controller transfers data

 Advantage: Overcomes CPU busy waiting loops
 No repeated CPU checking of device
 I/O module interrupts when ready: Event-driven!

 But, like polling, it’s still “Programmed I/O”

22

Copyright ©: University of Illinois CS 241 Staff

Interrupt-driven I/O

 Connections between devices and interrupt controller use shared
interrupt lines on the bus rather than dedicated wires

23

Key Idea: Inform device controller of IO request, go to blocked state,
wait for device to finish request

CPU
Interrupt

Controller
1. Device is finished

2. Controller
 issues
 interrupt

3. CPU ACKs
 interrupt

Copyright ©: University of Illinois CS 241 Staff

Interrupt-driven I/O

 Driver operation to input sequence of chars

i = 0;
while (…) {
 write_reg(opcode, read);
 block to wait for interrupt;
 buffer[i] = data_buffer;
 i++;
 compute;
}

24

while (busy_flag == true);
was:

Copyright ©: University of Illinois CS 241 Staff

Host-controller interface:
Interrupts

 CPU hardware has an interrupt report line that the
CPU tests after executing every instruction
 If a(ny) device raises an interrupt by setting interrupt

report line
 CPU catches the interrupt and saves the state of current running

process into PCB
 CPU dispatches/starts the interrupt handler
 Interrupt handler determines cause, services the device and clears

the interrupt report line

 Real life analogy for interrupts
 An alarm sets off when the food/laundry is ready
 So you can do other things in between

25

Copyright ©: University of Illinois CS 241 Staff

Support for Interrupts

 Need the ability to defer interrupt handling during
critical processing
 Why?

 Need efficient way to dispatch the proper interrupt
handler
 Interrupt comes with an id
 Interrupt vector maintains addresses of interrupt handler

functions (one per device) – an array of function pointers
 Id is index into vector of device driver functions

 Need multilevel interrupts - interrupt priority level
 Some interrupts more important than others, e.g., clock

more than network
26

Copyright ©: University of Illinois CS 241 Staff

Interrupt Handler

 Discovery
 At boot time, OS probes the hardware

buses to
 Determine what devices are present
 Install corresponding interrupt handlers into

the interrupt vector
 During I/O interrupt

 Device controller implicitly signals that
device is ready for next request

27

Copyright ©: University of Illinois CS 241 Staff

Other Uses of Interrupts

 Besides I/O devices
 Interrupt mechanisms are used to

handle a wide variety of exceptions:
 Division by zero, wrong address
 System calls (software interrupts/signals,

trap)
 Multi-threaded systems

 Examples?
 Virtual memory paging

28

Copyright ©: University of Illinois CS 241 Staff

How to converse with devices

 Polling
 CPU issues I/O command
 CPU directly writes instructions into device’s registers
 CPU busy waits for completion

 Interrupt-driven I/O
 CPU issues I/O command
 CPU directly writes instructions into device’s registers
 CPU continues operation until interrupt

 Next time: Direct Memory Access (DMA)
 CPU asks DMA controller to perform device-to-memory transfer
 DMA issues I/O command and transfers new item into memory
 CPU module is interrupted after completion

18

