
Memory Allocation

Copyright ©: University of Illinois CS 241 Staff 1

Allocation of Page Frames

 Scenario

 Several physical pages allocated to processes

A, B, and C. Process B page faults.

 Which page should be replaced?

 Allocating memory across processes?

 Does every process get the same fraction of

memory?

 Different fractions?

 Should we completely swap some processes out

of memory?

Copyright ©: University of Illinois CS 241 Staff 2

Allocation of Page Frames

 Each process needs minimum number of

pages

 Want to make sure that all processes that are

loaded into memory can make forward progress

 Example: IBM 370 – 6 pages to handle SS

MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

Copyright ©: University of Illinois CS 241 Staff 3

Fixed Allocation

 Allocate a minimum number of frames per

process

 Consider minimum requirements, e.g. on

previous slide

 One page from the current executed instruction

 Most instructions require two operands

 Include an extra page for paging out and one for

paging in

Copyright ©: University of Illinois CS 241 Staff 4

Equal Allocation

 Allocate an equal number of frames per job

 Example

 100 frames

 5 processes

 Each process gets 20 frames

 Issues

 But jobs use memory unequally

 High priority jobs have same number of page

frames and low priority jobs

 Degree of multiprogramming might vary

Copyright ©: University of Illinois CS 241 Staff 5

Proportional Allocation

 Allocate a number of frames per job

proportional to job size

 How do you determine job size

 Run command parameters ?

 Dynamically?

 Priority Allocation

 May want to give high priority process more

memory than low priority process

 Use a proportional allocation scheme using

priorities instead of size

Copyright ©: University of Illinois CS 241 Staff 6

Allocation of Page Frames

 Possible Replacement Scopes

 Local replacement

 Each process selects from only its own set of allocated

frames

 Process slowed down even if other less used pages of

memory are available

 Global replacement

 Process selects replacement frame from set of all

frames

 One process can take a frame from another

 Process may not be able to control its page fault rate.

Copyright ©: University of Illinois CS 241 Staff 7

Local Replacement: Per

Process

 Each process has separate pool of pages

 Fixed number of pages (e.g., Digital VMS)

 Fixed fraction of physical memory (1/P)

 Proportional to size of allocated address space

 Page fault in one process only replaces pages of that process

 Perform replacement (e.g., LRU) over only those pages

 Advantage

 No interference across processes

 Disadvantage

 Potentially inefficient allocation of memory

 How to handle sharing of pages?

Copyright ©: University of Illinois CS 241 Staff 8

Local Replacement: Per User

 Each user has separate pool of pages

 Advantage
 Fair across different users

 Disadvantage
 Inefficient allocation

Copyright ©: University of Illinois CS 241 Staff 9

Global Replacement

 Pages from all processes lumped into single

replacement pool

 Example: Run clock over all page frames

 Each process competes with other processes for

frames

 Advantages

 Flexibility of allocation

 Minimize total number of page faults

 Disadvantages

 One memory-intensive process can hog memory, hurt all

processes

Copyright ©: University of Illinois CS 241 Staff 10

Page Fault Frequency

Allocation

 Can we reduce Capacity misses by dynamically changing the

number of pages/application?

 Establish “acceptable” page-fault rate

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

 Question: What if we just don’t have enough memory

Copyright ©: University of Illinois CS 241 Staff 11

Too High: Need to give this
process some more frames!

Too Low: Take some frames
away and give to other processes!

Overcommitting Memory

 When does the Virtual Memory illusion break?

 Example

 Set of processes frequently references 33 important pages

 Physical memory can fit 32 pages

 What happens?

 Process A references page not in physical memory

 OS runs another process B

 OS replaces some page in memory with page for A

 How long can B run before it page faults?

 Cycle continues...

Copyright ©: University of Illinois CS 241 Staff 12

Overcommitting Memory

 If a process does not have enough pages, the

page-fault rate is very high

 Low CPU utilization.

 OS thinks that it needs to increase the degree of

multiprogramming

 Another process is added to the system.

 System throughput plunges…

 System is reading and writing pages instead of

executing useful instructions

 Average memory access time = disk access time

 Memory appears as slow as disk, instead of disk

appearing as fast as memory

Copyright ©: University of Illinois CS 241 Staff 13

Thrashing

 If a process does not have enough frames, the

page-fault rate is very high

 Low CPU utilization

 Thrashing

 A process is busy swapping pages in and out

 In other words, a process is spending more time paging

than executing

Copyright ©: University of Illinois CS 241 Staff 14

Thrashing

 Example

 Process has 3 frames allocated to it (use LRU)

 Reference string is 123412341234… - 4th access onwards

all cause page faults

 Cannot be fixed with better replacement policies

 Do not indicate that a page must be kept in memory

 Only show which pages are better than others to replace

Copyright ©: University of Illinois CS 241 Staff 15

Thrashing

 Student’s analogy to thrashing: Too many courses

 Drop a course

 OS solution: Admission control

 Determine how much memory each process needs

 Long-term scheduling policy

 Run only those processes whose memory requirements can

be satisfied

 What if memory needs of one process are too large????

Copyright ©: University of Illinois CS 241 Staff 16

Why Thrashing?

 Computations have locality

 Set of pages that are actively used together

 As the number of page frames decreases

 There are not enough available page frames to

contain the locality of the process

 Processes start faulting heavily

 Pages that are read in, are used and

immediately paged out

Copyright ©: University of Illinois CS 241 Staff 17

Thrashing

 Page fault rate goes up
 Processes get

suspended for page out
to disk

 The system may start
new jobs
 Reduces number of

available page frames

 Increases page faults

 System throughput
plunges!

Copyright ©: University of Illinois CS 241 Staff 18

Working Set

 Question

 How much memory does a process need to

keep the most recent computation in memory

with very few page faults?

 How can we determine this?

 Determine the working set of a process

 The principle of locality

 A program clusters its access to data and text

temporally

 A recently accessed page is more likely to be

accessed again

Copyright ©: University of Illinois CS 241 Staff 19

Working Set (1968, Denning)

 Need

 Set of pages process needs to avoid thrashing

 Requires knowing the future

 Working set

 Pages referenced by process in last  seconds of

execution

 Approximates locality

Copyright ©: University of Illinois CS 241 Staff 20

Working Set (1968, Denning)

   working-set window  fixed number of page

references

 Example: 10,000 instruction

 Working set of Pi = pages referenced in most recent



Copyright ©: University of Illinois CS 241 Staff 21

Working Set (1968, Denning)

 Using working set sizes

 Cache partitioning

 Give each app enough space for WS

 Page replacement

 Preferentially discard non-WS pages

 Scheduling

 Process not executed unless WS in memory

Copyright ©: University of Illinois CS 241 Staff 22

Working Set Size

At least allocate
this many frames
for this process

Copyright ©: University of Illinois CS 241 Staff 23

Working Set Size

 Choosing T

 T too small

 Will not encompass entire locality

 T too large

 Will encompass several localities

 T = 

 Will encompass entire program

Copyright ©: University of Illinois CS 241 Staff 24

Working sets of real programs

 Typical programs have phases

W
o
rk

in
g
 s

e
t s

iz
e

transition

stable

transition

stable

transition

stable

Copyright ©: University of Illinois CS 241 Staff 25

Working Set in Action to

Prevent Thrashing

 Algorithm

 If number free page frames > working set of

some suspended processi

 Activate processi and map in its working set

 If working set size of some processk increases

and no page frame is free

 Suspend processk and release all its pages

 Tracking the working set

 Moving window over reference string

 Approximate with Interval timer + a reference bit

Copyright ©: University of Illinois CS 241 Staff 26

Working Set Implementation

 Example: T = 10,000

 Timer interrupts after every 5000 time units

 Copy and set the values of all reference bits to 0

 Keep in memory 2 bits for each page

 Indicates if page was used within last 10,000 to 15,000

references

 If one of the bits in memory = 1

 Page in working set

 Not completely accurate - cannot tell where

reference occurred.

 Improvement - 10 bits and interrupt every 1000 time units

Copyright ©: University of Illinois CS 241 Staff 27

Page Fault Frequency

Working Set

 Approximation of pure working set

 Assumption

 If the working set is correct

 Not many page faults

 Approach

 Control thrashing by establishing acceptable page-fault

rate

Copyright ©: University of Illinois CS 241 Staff 28

Page Fault Frequency

Working Set

 Algorithm

 If page fault rate

increases beyond

assumed knee of curve

 Increase number of

page frames available

to process

 If page fault rate

decreases below foot

of knee of curve

 Decrease number of

page frames available

to process

Copyright ©: University of Illinois CS 241 Staff 29

Page Size Considerations

 Small pages

 Large page tables

 Minimizes internal

fragmentation

 Good for locality of

reference (~256)

 Page tables are larger

 Disk-seek time

dominates transfer time

(It takes the same time

to read a large page as

a small page)

 Large pages

 Significant amounts of

a page may not be

referenced

 Enables more data per

seek

 Real systems (can be

reconfigured)

 Windows: default 8KB

 Linux: default 4 KB

Copyright ©: University of Illinois CS 241 Staff 30

