
Memory Allocation

Copyright ©: University of Illinois CS 241 Staff 1

Allocation of Page Frames

 Scenario

 Several physical pages allocated to processes

A, B, and C. Process B page faults.

 Which page should be replaced?

 Allocating memory across processes?

 Does every process get the same fraction of

memory?

 Different fractions?

 Should we completely swap some processes out

of memory?

Copyright ©: University of Illinois CS 241 Staff 2

Allocation of Page Frames

 Each process needs minimum number of

pages

 Want to make sure that all processes that are

loaded into memory can make forward progress

 Example: IBM 370 – 6 pages to handle SS

MOVE instruction:

 instruction is 6 bytes, might span 2 pages

 2 pages to handle from

 2 pages to handle to

Copyright ©: University of Illinois CS 241 Staff 3

Fixed Allocation

 Allocate a minimum number of frames per

process

 Consider minimum requirements, e.g. on

previous slide

 One page from the current executed instruction

 Most instructions require two operands

 Include an extra page for paging out and one for

paging in

Copyright ©: University of Illinois CS 241 Staff 4

Equal Allocation

 Allocate an equal number of frames per job

 Example

 100 frames

 5 processes

 Each process gets 20 frames

 Issues

 But jobs use memory unequally

 High priority jobs have same number of page

frames and low priority jobs

 Degree of multiprogramming might vary

Copyright ©: University of Illinois CS 241 Staff 5

Proportional Allocation

 Allocate a number of frames per job

proportional to job size

 How do you determine job size

 Run command parameters ?

 Dynamically?

 Priority Allocation

 May want to give high priority process more

memory than low priority process

 Use a proportional allocation scheme using

priorities instead of size

Copyright ©: University of Illinois CS 241 Staff 6

Allocation of Page Frames

 Possible Replacement Scopes

 Local replacement

 Each process selects from only its own set of allocated

frames

 Process slowed down even if other less used pages of

memory are available

 Global replacement

 Process selects replacement frame from set of all

frames

 One process can take a frame from another

 Process may not be able to control its page fault rate.

Copyright ©: University of Illinois CS 241 Staff 7

Local Replacement: Per

Process

 Each process has separate pool of pages

 Fixed number of pages (e.g., Digital VMS)

 Fixed fraction of physical memory (1/P)

 Proportional to size of allocated address space

 Page fault in one process only replaces pages of that process

 Perform replacement (e.g., LRU) over only those pages

 Advantage

 No interference across processes

 Disadvantage

 Potentially inefficient allocation of memory

 How to handle sharing of pages?

Copyright ©: University of Illinois CS 241 Staff 8

Local Replacement: Per User

 Each user has separate pool of pages

 Advantage
 Fair across different users

 Disadvantage
 Inefficient allocation

Copyright ©: University of Illinois CS 241 Staff 9

Global Replacement

 Pages from all processes lumped into single

replacement pool

 Example: Run clock over all page frames

 Each process competes with other processes for

frames

 Advantages

 Flexibility of allocation

 Minimize total number of page faults

 Disadvantages

 One memory-intensive process can hog memory, hurt all

processes

Copyright ©: University of Illinois CS 241 Staff 10

Page Fault Frequency

Allocation

 Can we reduce Capacity misses by dynamically changing the

number of pages/application?

 Establish “acceptable” page-fault rate

 If actual rate too low, process loses frame

 If actual rate too high, process gains frame

 Question: What if we just don’t have enough memory

Copyright ©: University of Illinois CS 241 Staff 11

Too High: Need to give this
process some more frames!

Too Low: Take some frames
away and give to other processes!

Overcommitting Memory

 When does the Virtual Memory illusion break?

 Example

 Set of processes frequently references 33 important pages

 Physical memory can fit 32 pages

 What happens?

 Process A references page not in physical memory

 OS runs another process B

 OS replaces some page in memory with page for A

 How long can B run before it page faults?

 Cycle continues...

Copyright ©: University of Illinois CS 241 Staff 12

Overcommitting Memory

 If a process does not have enough pages, the

page-fault rate is very high

 Low CPU utilization.

 OS thinks that it needs to increase the degree of

multiprogramming

 Another process is added to the system.

 System throughput plunges…

 System is reading and writing pages instead of

executing useful instructions

 Average memory access time = disk access time

 Memory appears as slow as disk, instead of disk

appearing as fast as memory

Copyright ©: University of Illinois CS 241 Staff 13

Thrashing

 If a process does not have enough frames, the

page-fault rate is very high

 Low CPU utilization

 Thrashing

 A process is busy swapping pages in and out

 In other words, a process is spending more time paging

than executing

Copyright ©: University of Illinois CS 241 Staff 14

Thrashing

 Example

 Process has 3 frames allocated to it (use LRU)

 Reference string is 123412341234… - 4th access onwards

all cause page faults

 Cannot be fixed with better replacement policies

 Do not indicate that a page must be kept in memory

 Only show which pages are better than others to replace

Copyright ©: University of Illinois CS 241 Staff 15

Thrashing

 Student’s analogy to thrashing: Too many courses

 Drop a course

 OS solution: Admission control

 Determine how much memory each process needs

 Long-term scheduling policy

 Run only those processes whose memory requirements can

be satisfied

 What if memory needs of one process are too large????

Copyright ©: University of Illinois CS 241 Staff 16

Why Thrashing?

 Computations have locality

 Set of pages that are actively used together

 As the number of page frames decreases

 There are not enough available page frames to

contain the locality of the process

 Processes start faulting heavily

 Pages that are read in, are used and

immediately paged out

Copyright ©: University of Illinois CS 241 Staff 17

Thrashing

 Page fault rate goes up
 Processes get

suspended for page out
to disk

 The system may start
new jobs
 Reduces number of

available page frames

 Increases page faults

 System throughput
plunges!

Copyright ©: University of Illinois CS 241 Staff 18

Working Set

 Question

 How much memory does a process need to

keep the most recent computation in memory

with very few page faults?

 How can we determine this?

 Determine the working set of a process

 The principle of locality

 A program clusters its access to data and text

temporally

 A recently accessed page is more likely to be

accessed again

Copyright ©: University of Illinois CS 241 Staff 19

Working Set (1968, Denning)

 Need

 Set of pages process needs to avoid thrashing

 Requires knowing the future

 Working set

 Pages referenced by process in last seconds of

execution

 Approximates locality

Copyright ©: University of Illinois CS 241 Staff 20

Working Set (1968, Denning)

 working-set window fixed number of page

references

 Example: 10,000 instruction

 Working set of Pi = pages referenced in most recent

Copyright ©: University of Illinois CS 241 Staff 21

Working Set (1968, Denning)

 Using working set sizes

 Cache partitioning

 Give each app enough space for WS

 Page replacement

 Preferentially discard non-WS pages

 Scheduling

 Process not executed unless WS in memory

Copyright ©: University of Illinois CS 241 Staff 22

Working Set Size

At least allocate
this many frames
for this process

Copyright ©: University of Illinois CS 241 Staff 23

Working Set Size

 Choosing T

 T too small

 Will not encompass entire locality

 T too large

 Will encompass several localities

 T =

 Will encompass entire program

Copyright ©: University of Illinois CS 241 Staff 24

Working sets of real programs

 Typical programs have phases

W
o
rk

in
g
 s

e
t s

iz
e

transition

stable

transition

stable

transition

stable

Copyright ©: University of Illinois CS 241 Staff 25

Working Set in Action to

Prevent Thrashing

 Algorithm

 If number free page frames > working set of

some suspended processi

 Activate processi and map in its working set

 If working set size of some processk increases

and no page frame is free

 Suspend processk and release all its pages

 Tracking the working set

 Moving window over reference string

 Approximate with Interval timer + a reference bit

Copyright ©: University of Illinois CS 241 Staff 26

Working Set Implementation

 Example: T = 10,000

 Timer interrupts after every 5000 time units

 Copy and set the values of all reference bits to 0

 Keep in memory 2 bits for each page

 Indicates if page was used within last 10,000 to 15,000

references

 If one of the bits in memory = 1

 Page in working set

 Not completely accurate - cannot tell where

reference occurred.

 Improvement - 10 bits and interrupt every 1000 time units

Copyright ©: University of Illinois CS 241 Staff 27

Page Fault Frequency

Working Set

 Approximation of pure working set

 Assumption

 If the working set is correct

 Not many page faults

 Approach

 Control thrashing by establishing acceptable page-fault

rate

Copyright ©: University of Illinois CS 241 Staff 28

Page Fault Frequency

Working Set

 Algorithm

 If page fault rate

increases beyond

assumed knee of curve

 Increase number of

page frames available

to process

 If page fault rate

decreases below foot

of knee of curve

 Decrease number of

page frames available

to process

Copyright ©: University of Illinois CS 241 Staff 29

Page Size Considerations

 Small pages

 Large page tables

 Minimizes internal

fragmentation

 Good for locality of

reference (~256)

 Page tables are larger

 Disk-seek time

dominates transfer time

(It takes the same time

to read a large page as

a small page)

 Large pages

 Significant amounts of

a page may not be

referenced

 Enables more data per

seek

 Real systems (can be

reconfigured)

 Windows: default 8KB

 Linux: default 4 KB

Copyright ©: University of Illinois CS 241 Staff 30

