Memory Allocation

Copyright ©: University of Illinois CS 241 Staff

Allocation of Page Frames

Scenario

o Several physical pages allocated to processes
A, B, and C. Process B page faults.

o Which page should be replaced?

Allocating memory across processes?

o Does every process get the same fraction of
memory?

o Different fractions?

o Should we completely swap some processes out
of memory?

Copyright ©: University of Illinois CS 241 Staff 2]

Allocation of Page Frames

Each process needs minimum number of

pages

o Want to make sure that all processes that are
loaded into memory can make forward progress

o Example: IBM 370 — 6 pages to handle SS

MOVE instruction:

Instruction is 6 bytes, might span 2 pages
2 pages to handle from
2 pages to handle to

Copyright ©: University of Illinois CS 241 Staff

Fixed Allocation

Allocate a minimum number of frames per
process

Consider minimum requirements, e.g. on
previous slide

o One page from the current executed instruction
o Most instructions require two operands

o Include an extra page for paging out and one for
paging in

Copyright ©: University of Illinois CS 241 Staff

Equal Allocation

Allocate an equal number of frames per job

o Example
100 frames
S processes
Each process gets 20 frames

Issues
o But jobs use memory unequally

o High priority jobs have same number of page
frames and low priority jobs

o Degree of multiprogramming might vary

Copyright ©: University of Illinois CS 241 Staff

Proportional Allocation

Allocate a number of frames per job
proportional to job size

o How do you determine job size
Run command parameters ?
Dynamically?

Priority Allocation

o May want to give high priority process more
memory than low priority process

o Use a proportional allocation scheme using
priorities instead of size

Copyright ©: University of Illinois CS 241 Staff

Allocation of Page Frames

Possible Replacement Scopes

o Local replacement

Each process selects from only its own set of allocated
frames

Process slowed down even if other less used pages of
memory are available
o Global replacement

Process selects replacement frame from set of all
frames

One process can take a frame from another
Process may not be able to control its page fault rate.

Copyright ©: University of Illinois CS 241 Staff 7]

Local Replacement: Per
Process

Each process has separate pool of pages

o Fixed number of pages (e.g., Digital VMS)

o Fixed fraction of physical memory (1/P)

o Proportional to size of allocated address space

Page fault in one process only replaces pages of that process
o Perform replacement (e.g., LRU) over only those pages
Advantage

o No interference across processes

Disadvantage

o Potentially inefficient allocation of memory

o How to handle sharing of pages?

Copyright ©: University of Illinois CS 241 Staff

Local Replacement: Per User

Each user has separate pool of pages

Advantage
o Fair across different users

Disadvantage
o Inefficient allocation

Copyright ©: University of Illinois CS 241 Staff

Global Replacement

Pages from all processes lumped into single
replacement pool
o Example: Run clock over all page frames

Each process competes with other processes for
frames

Advantages
o Flexibility of allocation
o Minimize total number of page faults

Disadvantages

o One memory-intensive process can hog memory, hurt all
processes

Copyright ©: University of Illinois CS 241 Staff

Page Fault Frequency
Allocation

Can we reduce Capacity misses by dynamically changing the
number of pages/application?

Too High: Need to give this
process some more frames!
upper bound

lower bound

page-fault rate

Too Low: Take some frames
number of rames away and give to other processes!

Establish “acceptable” page-fault rate
o If actual rate too low, process loses frame
o If actual rate too high, process gains frame

Question: What if we just don’t have enough memory

Copyright ©: University of Illinois CS 241 Staff 11]

Overcommitting Memory

When does the Virtual Memory illusion break?

Example

o Set of processes frequently references 33 important pages
o Physical memory can fit 32 pages

What happens?

Process A references page not in physical memory
OS runs another process B

OS replaces some page in memory with page for A

How long can B run before it page faults?
Cycle continues...

O O O O

Copyright ©: University of Illinois CS 241 Staff

Overcommitting Memory

If a process does not have enough pages, the
page-fault rate is very high

O

O

O

O

Low CPU utilization.

OS thinks that it needs to increase the degree of
multiprogramming

Another process is added to the system.
System throughput plunges...

System is reading and writing pages instead of
executing useful instructions

O

O

Average memory access time = disk access time

Memory appears as slow as disk, instead of disk
appearing as fast as memory

Copyright ©: University of Illinois CS 241 Staff

Thrashing

If a process does not have enough frames, the
page-fault rate is very high
o Low CPU utilization

Thrashing
o A process Is busy swapping pages in and out

o In other words, a process is spending more time paging
than executing

Copyright ©: University of Illinois CS 241 Staff

Thrashing

Example

o Process has 3 frames allocated to it (use LRU)

o Reference string is 123412341234... - 4 access onwards
all cause page faults

Cannot be fixed with better replacement policies

o Do not indicate that a page must be kept in memory

o Only show which pages are better than others to replace

Copyright ©: University of Illinois CS 241 Staff

Thrashing

Student’s analogy to thrashing: Too many courses
o Drop a course

OS solution: Admission control
o Determine how much memory each process needs

o Long-term scheduling policy

Run only those processes whose memory requirements can
be satisfied

o What if memory needs of one process are too large????

Copyright ©: University of Illinois CS 241 Staff

[Why Thrashing?

Computations have locality
o Set of pages that are actively used together

As the number of page frames decreases

o There are not enough available page frames to
contain the locality of the process

Processes start faulting heavily

o Pages that are read in, are used and
Immediately paged out

Copyright ©: University of Illinois CS 241 Staff

Thrashing

= Page fault rate goes up

o Processes get
suspended for
to disk

= The system may start

new jobs

o Reduces number of
available page frames

o Increases page faults

page out [f

[

! thrashing

CPU utilization

H SySte m th rou g h p ut degree of multiprogramming

plunges!

Copyright ©: University of Illinois CS 241 Staff

[Working Set

Question

o How much memory does a process need to
keep the most recent computation in memory
with very few page faults?

How can we determine this?
o Determine the working set of a process

o The principle of locality

A program clusters its access to data and text
temporally

A recently accessed page is more likely to be
accessed again

Copyright ©: University of Illinois CS 241 Staff

[Working Set (1968, Denning)

Need
o Set of pages process needs to avoid thrashing
o Requires knowing the future

Working set
o Pages referenced by process in last T seconds of
execution

o Approximates locality

Copyright ©: University of Illinois CS 241 Staff

[Working Set (1968, Denning)

A = working-set window = fixed number of page
references
o Example: 10,000 instruction

Working set of P; = pages referenced in most recent
A

page reference table
. ..2615777751623412344434344413234443444...

— —]

I!'1 iL2
WS(t,) = {1,2,5,6,7} WS(t,) = {3,4}

Copyright ©: University of Illinois CS 241 Staff

[Working Set (1968, Denning)

Using working set sizes
o Cache partitioning

Give each app enough space for WS
o Page replacement

Preferentially discard non-WS pages

o Scheduling
Process not executed unless WS in memory

Copyright ©: University of Illinois CS 241 Staff

[Working Set Size

Working Set Size Page Rate for Single Process

Page
Fault
Rate

At least allocate
this many frames
for this process(|

csuinber of
Page Frames

Copyright ©: University of Illinois CS 241 Staff

[Working Set Size

Choosing T
o T too small
Will not encompass entire locality

o Ttoo large
Will encompass several localities

o T =0
Will encompass entire program

Copyright ©: University of Illinois CS 241 Staff

[Working sets of real programs

9ZIS 19S BunIopN

>
stable stable stable

transition transition transition

Typical programs have phases

Copyright ©: University of Illinois CS 241 Staff

Working Set in Action to
Prevent Thrashing

Algorithm

o If number free page frames > working set of
some suspended process,

Activate process; and map in its working set

o If working set size of some process, increases
and no page frame is free

Suspend process, and release all its pages

Tracking the working set
o Moving window over reference string
o Approximate with Interval timer + a reference bit

Copyright ©: University of Illinois CS 241 Staff 26]

[Working Set Implementation

Example: T = 10,000
o Timer interrupts after every 5000 time units
Copy and set the values of all reference bits to O

o Keep in memory 2 bits for each page

Indicates if page was used within last 10,000 to 15,000
references

o If one of the bits in memory =1
Page in working set
Not completely accurate - cannot tell where
reference occurred.
o Improvement - 10 bits and interrupt every 1000 time units

Copyright ©: University of Illinois CS 241 Staff 27]

Page Fault Frequency
Working Set

Approximation of pure working set

Assumption

o If the working set is correct
Not many page faults

Approach

o Control thrashing by establishing acceptable page-fault
rate

Copyright ©: University of Illinois CS 241 Staff

Page Fault Frequency
Working Set

Algorithm
If page fault rate
increases beyond Working set to small .
assumed knee of curve Page Rate for Single Process
o
Increase number. of Page Fensonable
page frames available Fault Working Set
fp——-

to process Rate
If page fault rate
decreases below foot Working Set too large

o

of knee of curve

Decrease number of

page frames available Number of

to process Page Frames

Copyright ©: University of Illinois CS 241 Staff

Page Size Considerations

Small pages Large pages

o Large page tables o Significant amounts of

o Minimizes internal a page may not be
fragmentation referenced

o Good for locality of o Enables more data per
reference (~256) seek

o Page tables are larger Real systems (can be

o Disk-seek time reconfigured)
dominates transfer time o Windows: default SKB

(It takes the same time
to read a large page as
a small page)

o Linux: default4 KB

Copyright ©: University of Illinois CS 241 Staff

