Memory Replacement Policies

Copyright ©: University of lllinois CS 241 Staff

Storage Placement Strategies

Best fit
o Produces the smallest leftover hole
o Creates small holes that cannot be used

Worst Fit
o Produces the largest leftover hole
o Difficult to run large programs

First Fit
o Creates average size holes

Buddy System

o Used in Linux

Copyright ©: University of Illinois CS 241 Staff

Buddy System

physically contiguous pages

Memory allocated using
power-of-2 allocator 256 KB

o Satisfy requests in units of
size power of 2

128 KB 128 KB

o Request rounded up to A An

next highest power of 2
o When smaller allocation 64‘KB 64‘KB

needed than is available, B, By

current chunk split into H H

two buddies of next-lower

32 KB| |32 KB
power of 2 e e

Continue until
appropriate sized chunk
available

Copyright ©: University of lllinois CS 241 Staff

Buddy System

Approach
o Minimum allocation size = smallest frame
o Use a bitmap to monitor frame use

o Maintain freelist for each possible frame size
power of 2 frame sizes from min to max
o Initially one block = entire buffer

o Iftwo neighboring frames (“buddies”) are free, combine
them and add to next larger freelist

Copyright ©: University of lllinois CS 241 Staff

[Buddy System Example

128 Free

Copyright ©: University of lllinois CS 241 Staff

Buddy System Example

Process A requests 16

128 Free
64 Free 64 Free
32 Free 32 Free 64 Free
16 A | 16 Free 32 Free 64 Free

Copyright ©: University of lllinois CS 241 Staff

[Buddy System Example

Process B requests 32

16 A

16 Free

32B

64 Free

Copyright ©: University of lllinois CS 241 Staff

Buddy System Example

Process C requests 8

16 A 16 Free 32B 64 Free

16 A 8 32B 64 Free

8
C

Copyright ©: University of lllinois CS 241 Staff

[Buddy System Example

Process A exits

16 Free

O oo

32B

64 Free

Copyright ©: University of lllinois CS 241 Staff

Buddy System Example

Process C exits

16 Free| 8 | 8 32B 64 Free

16 Free | 16 Free 32B 64 Free

32 Free 32B 64 Free
Advantage

o Minimizes external fragmentation
Disadvantage

o Internal fragmentation when not 2”*n request

Copyright ©: University of lllinois CS 241 Staff

Virtual Memory Recap

Main memory
o QOrganized into fixed sized frames

Virtual address space

o Per process

o Split into fixed-sized pages

Page

o Size of frame = size of page

o May be brought from disk into a frame in main memory

Page fault
o Process accesses a page that is not in main memory
o Trapl/interrupt occurs to OS and VM system is invoked

Copyright ©: University of lllinois CS 241 Staff

Demand Paging

Bring a page into memory only when it is needed
o Less I/O needed

o Less memory needed

o Faster response

o More users

Page is needed when

o Process references it

o Invalid reference -> abort

o hot-in-memory -> bring to memory

Copyright ©: University of lllinois CS 241 Staff

Demand Paging Example

Reference | V| R | D |W |Re| E Frame Address

Page fault @
ref
\\

Load M‘_,_———JMML\ ‘/////’/////r
Page

table

Free frame

Copyright ©: University of lllinois CS 241 Staff

Demand Paging Policies

Fetch Strategies

o When should a page be brought into primary (main) memory
from secondary (disk) storage.
Demand Paging = only when demanded by a process (default)
Pre-paging = before request by process

Placement Strategies

o When a page is brought into primary storage, which frame
should it be placed in?

Replacement Strategies

o Which page now in primary storage should be removed from
primary storage when some other page needs to be brought in
and there is no free frame

Copyright ©: University of lllinois CS 241 Staff

Page Fault Handler

Find a free frame
o If a free frame exists, use it

o Otherwise, select a victim frame using a page replacement
algorithm

o Write the page in the victim frame to disk and update any
necessary page tables

Find location of page on disk

Read the requested page from the disk to the
selected frame

Return from page fault handler to process

Copyright ©: University of lllinois CS 241 Staff

[Copy-on-Write

Copy-on-Write (COW)
o Allows parent and child processes to
Initially share the same pages in memory

o If either process modifies a shared page,
only then is the page copied

o More efficient process creation since only
modified pages are copied

Copyright ©: University of lllinois CS 241 Staff

Before: Copy on Write

Physical

Memory Process 2

Process 1

> PageA [/

—> Page B [€—

—> Page C S

Copyright ©: University of lllinois CS 241 Staff

After: Copy on Write

Physical

Memory Process 2

Process 1

> PageA [/

—> Page B [€—

write()

Page C S

Copy of
Page C

Copyright ©: University of lllinois CS 241 Staff

Page Replacement Issues

No free frames

o Disk read (and possibly read) of pages is
required

Page to be replaced has not been changed

since it was read In

o Page can be overwritten and does not need to
be copied out to disk

Be careful before evicting!

o Read-only pages are never written but may be
shared!

Copyright ©: University of lllinois CS 241 Staff 19]

Page Replacement Issues

Dirty bit in each page table entry

o When page brought in from disk, bit reset

o First write to page => bit set

o Bit checked when this frame selected as victim (if set,
save to page before overwriting)

Reference string

o Set of page numbers generated by a process (via its page
fault handler) over time, e.g., 1, 3, 4, 3, 2, ...

Goal

o Come up with page replace algorithms that minimize
number of page faults (why?)

Copyright ©: University of lllinois CS 241 Staff

[Page Replacement Strategies

The Optimal Algorithm

o Among all pages in frames, evict the one
that has its next access farthest into the
future

o Can prove formally this does better than
any other algorithm

o Realistic?

Copyright ©: University of lllinois CS 241 Staff

The Optimal Page
Replacement Algorithm

|dea:

o Select the page that will not be needed for the
longest time In the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C d
Page 0 a a a a a
Frames 1 b b b b o

2 c c c o] c

3 d d d d d

Page faults X

Copyright ©: University of lllinois CS 241 Staff

The Optimal Page
Replacement Algorithm

|dea:

o Select the page that will not be needed for the
longest time In the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C d
Page 0 a a a a a a a a a a
Frames 1 b b b b b b b b b b

2 c c c c c o] c c c c

3 d d d d d e @ @ @ @

Page faults X X

Copyright ©: University of lllinois CS 241 Staff

The Optimal Page
Replacement Algorithm

|dea:

o Select the page that will not be needed for the
longest time In the future

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C d
Page 0 a a a a a a a a a a a
2 c c C C C C C C C C c
3 d d d d d e = = = e d
Page faults X X

Copyright ©: University of lllinois CS 241 Staff

The Optimal Page
Replacement Algorithm

ldea:

o Select the page that will not be needed for the
longest time In the future

Problem:

o Can’t know the future of a program

o Can’t know when a given page will be needed
next

o The optimal algorithm is unrealizable

Copyright ©: University of lllinois CS 241 Staff

Principal of Optimality

If the reference string can be predicted accurately

o Don't use demand paging; use pre-paging

o Allows paging activity of pages needed in the future to be
overlapped with computation

Optimal provides a basis for comparison with other

schemes

o Is difficult to implement but compilers may help by
providing hints (for a later course)

o For now: try to approximate the optimal strategy with other
page replacement algorithms

Copyright ©: University of lllinois CS 241 Staff 26]

Page Replacement Algorithms

FIFO - first Iin first out

o Evict the page that has been in primary memory
the longest

Random
o Choose a victim page randomly

LRU - least recently used

o Evict the page not used for the longest time In
the past

o Intended as an approximation to the optimal

Copyright ©: University of lllinois CS 241 Staff

[Page Replacement Algorithms

LFU - least frequently used
o Evict the page that is used least often

NUR/NRU - not used recently/not recently
used
o An approximation to LRU

Working set

o Keep in memory those pages that the process is
actively using

Copyright ©: University of lllinois CS 241 Staff 28]

FIFO Page Replacement
Algorithm

Always replace the oldest page
Example: Memory system with 4 frames

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C a
Page 0 a a a a
Frames 1 b o

2 c c c o] c

3 d d d

Page faults X

Copyright ©: University of lllinois CS 241 Staff

FIFO Page Replacement
Algorithm

Always replace the oldest page
Example: Memory system with 4 frames

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C a
Page 0 a a a a a a a a
Frames 1 b o b b b b

2 c c C C C e e e e

3 d d d d d d d

Page faults X X

Copyright ©: University of lllinois CS 241 Staff

FIFO Page Replacement
Algorithm

Always replace the oldest page
Example: Memory system with 4 frames

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C a
Page 0 a a a a a a a a C
Frames 1 b o o b b b b

2 c c C C C e e e e e

3 d d d d d d d d
Page faults X X X

Copyright ©: University of lllinois CS 241 Staff

FIFO Page Replacement
Algorithm

Always replace the oldest page
Example: Memory system with 4 frames

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b a
Page 0 a a a a a a a a C c
Frames 1 b b b b b b b b

2 c c C C C e e e e e e

3 d d d d d d d d a
Page faults X X X

Copyright ©: University of lllinois CS 241 Staff

FIFO Page Replacement
Algorithm

Always replace the oldest page
Disadvantage

o The oldest page may be needed again soon

o Some page may be important throughout
execution

Example?

It will get old, but replacing it will cause an immediate
page fault

Copyright ©: University of lllinois CS 241 Staff

Belady's Anomaly

Given a reference
string, it would be
natural to assume
that

o The more the total
number of frames in | | | | | |
maln memory’ the 1 : nur?wberoffranjes) ’
fewer the number of
page faults Not true for some

algorithms!
o E.g., for FIFO

—_ e —_ —_
o NN A o
T T | T

number of page faults

N~ o @
I I T |

Copyright ©: University of lllinois CS 241 Staff

Belady's Anomaly

Consider FIFO page replacement
o Look at this reference string
012301401234

o Case 1:
3 frames available

o Case 2:
4 frames available

Copyright ©: University of lllinois CS 241 Staff

Belady's Anomaly

FIFO with 3 page frames

o 1 2 3 0 1 4 0 1 2 3 4

Youngest Page o(1(2(3(0(1 (4|4 |4|2|3]|3

o(1|12(3|0|1|1|1]|4)]2]|2

Oldest Page o(1(2(3|0(0|0|21|4]|4
P P P P P P P P P

Copyright ©: University of lllinois CS 241 Staff

Belady's Anomaly

Youngest Page

Oldest Page

Youngest Page

Oldest Page

FIFO with 3 page frames

o 1 2 3 0 1 4 0 1 2 3 4
0 213|101 14|14 |4 |2|3]|3
o(1(2(3(01|1|1|4)|2]°2
o(1(2 13010101 |4] A4

P P P P P P P P P

FIFO with 4 page frames

o 1 2 3 O 1 4 0 1 2 3 4
o(1(2|13|3|3|4|]0(|1|2]|3]| 4
2121213141011 |2]3
111|123]4[0|1]|2
O(0(0|1]2]|3|4|]0]|1
P P P P P P P P P P

Copyright ©: University of lllinois CS 241 Staff

Belady's Anomaly

Youngest Page

Oldest Page

Youngest Page

Oldest Page

FIFO with 3 page frames

o 1 2 3 O 1 4 0 1 2 3 4
0 213|101 14|14 |4 |2|3]|3
0|12 |9pagefaults| | 1|4 |2]2
o(1(2 13010101 |4] A4

P P P P P P P P P

FIFO with 4 page frames

o 1 2 3 O 1 4 0 1 2 3 4
oOo(1(2]|13]3|3|4|]0(1|2]|3] 4
2|10 page faults [lo]l1]2]3
1|11(1(2|3]|4|0]|1]2
O(0(0|1]2]|3|4|]0]|1
P P P P P P P P P P

Copyright ©: University of lllinois CS 241 Staff

Least Recently Used
[Algorithm (LRU)

Keep track of when a page is used
Replace the page that has been used least

recently
Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C d
Page 0 a
Frames 1 b
2 c
3 d

Page faults

Copyright ©: University of lllinois CS 241 Staff

Least Recently Used
[Algorithm (LRU)
Keep track of when a page is used

Replace the page that has been used least
recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C d
Page 0 a a a a a
Frames 1 b b o o o

2 c c c c c

3 d d d d d

Page faults X

Copyright ©: University of lllinois CS 241 Staff

Least Recently Used
[Algorithm (LRU)
Keep track of when a page is used

Replace the page that has been used least
recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C d
Page 0 a a a a a a a a a
Frames 1 b b b b b b b b b

2 c c C C C e e e e

3 d d d d d d d d d

Page faults X X

Copyright ©: University of lllinois CS 241 Staff

Least Recently Used
[Algorithm (LRU)
Keep track of when a page is used

Replace the page that has been used least
recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b d
Page 0 a a a a a a a a a a
Frames 1 b b b b b b b b b b

2 c c C C C e e e e e

3 d d d d d d d d d o]
Page faults X X X

Copyright ©: University of lllinois CS 241 Staff

Least Recently Used
[Algorithm (LRU)
Keep track of when a page is used

Replace the page that has been used least
recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10
Requests C a d b e b a b C d
Page 0 a a a a a a a a a a a
2 c c o] o] o] e e e e e d
3 d d d d d d d d d C C
Page faults X X X

Copyright ©: University of lllinois CS 241 Staff

Least Recently Used Issues

Not optimal
Does not suffer from Belady's anomaly

Implementation

o Use time of last reference
Update every time page accessed (use system clock)
Page replacement - search for smallest time

o Use a stack
On page access : remove from stack, push on top
Victim selection: select page at bottom of stack

Both approaches require large processing
overhead, more space, and hardware support.

Copyright ©: University of lllinois CS 241 Staff

LRU Approximation Algorithms

Not used recently/Not recently used
(NUR/NRU)

Reference Bit in each page table entry
o With each page, associate a bit, initially = 0
o When page is referenced, bit is setto 1

o Victim Selection:

Any page with reference bit == 0O (if one exists,
otherwise FIFO)

BUT: Do not know order

Copyright ©: University of lllinois CS 241 Staff

LRU Approximation Algorithms

Additional Reference Bits Algorithm

O

O

O

Keep n bits for each page in a table in memory
Each reference sets highest order bit
Periodically, shift bits right dropping the lowest
bit)

Use value as 8 bit unsigned integer

Victim Selection:
Page with the lowest value of reference counter
Value may not be unique, use FIFO to resolve conflicts

Copyright ©: University of lllinois CS 241 Staff 46]

Second Chance Page
Replacement

Modification to FIFO

Pages kept in a linked list

o Oldest is at the front of the list
Look at the oldest page

o If referenced bit ==
Select for replacement
o Else
Page was recently used -> don’t replace it
Clear referenced bit
Move to the end of list
What if every page was used in last clock tick?

o Select a page at random

Copyright ©: University of lllinois CS 241 Staff

Clock Algorithm (Same effect
as Second Chance)

Maintain a circular list of .
pages in memory : i

Set reference bit on access K c

Clock sweeps over memory /
J D

o Look for victim page with
referenced bit unset

o If bitis set, clear it and move E
on to next page

o Replace pages that haven't G
been referenced for one
complete clock revolution

Copyright ©: University of lllinois CS 241 Staff

