
1

Memory Replacement Policies

Indranil Gupta (Indy)

Copyright ©: University of Illinois CS 241 Staff

Storage Placement Strategies

 Best fit

 Produces the smallest leftover hole

 Creates small holes that cannot be used

 Worst Fit

 Produces the largest leftover hole

 Difficult to run large programs

 First Fit

 Creates average size holes

 Buddy System

 Used in Linux

Copyright ©: University of Illinois CS 241 Staff 2

Buddy System

 Memory allocated using

power-of-2 allocator

 Satisfy requests in units of

size power of 2

 Request rounded up to

next highest power of 2

 When smaller allocation

needed than is available,

current chunk split into

two buddies of next-lower

power of 2

 Continue until

appropriate sized chunk

available

Copyright ©: University of Illinois CS 241 Staff 3

Buddy System

 Approach

 Minimum allocation size = smallest frame

 Use a bitmap to monitor frame use

 Maintain freelist for each possible frame size

 power of 2 frame sizes from min to max

 Initially one block = entire buffer

 If two neighboring frames (“buddies”) are free, combine

them and add to next larger freelist

Copyright ©: University of Illinois CS 241 Staff 4

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 5

128 Free

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 6

128 Free

Process A requests 16

64 Free 64 Free

32 Free 32 Free

16 A 16 Free 32 Free

64 Free

64 Free

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 7

128 Free

Process B requests 32

16 A 16 Free 32 Free 64 Free32 B

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 8

128 Free

Process C requests 8

16 A 16 Free 32 B 64 Free

16 A
8

C
32 B 64 Free8

Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 9

Process A exits

16 Free
8

C
32 B 64 Free8

Buddy System Example

 Advantage

 Minimizes external fragmentation

 Disadvantage

 Internal fragmentation when not 2^n request

Copyright ©: University of Illinois CS 241 Staff 10

Process C exits

16 Free 8 32 B 64 Free8

16 Free 32 B 64 Free16 Free

32 B 64 Free32 Free

Virtual Memory Recap

 Main memory

 Organized into fixed sized frames

 Virtual address space

 Per process

 Split into fixed-sized pages

 Page

 Size of frame = size of page

 May be brought from disk into a frame in main memory

 Page fault

 Process accesses a page that is not in main memory

 Trap/interrupt occurs to OS and VM system is invoked

Copyright ©: University of Illinois CS 241 Staff 11

Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed

 Faster response

 More users

 Page is needed when

 Process references it

 invalid reference -> abort

 not-in-memory -> bring to memory

Copyright ©: University of Illinois CS 241 Staff 12

13

Demand Paging Example

Load M

Free frame

Page

table

VM

ref

Page fault

Frame AddressDRVReference W ERe

Frame AddressDRVReference W ERe

Copyright ©: University of Illinois CS 241 Staff

Demand Paging Policies

 Fetch Strategies

 When should a page be brought into primary (main) memory

from secondary (disk) storage.

 Demand Paging = only when demanded by a process (default)

 Pre-paging = before request by process

 Placement Strategies

 When a page is brought into primary storage, which frame

should it be placed in?

 Replacement Strategies

 Which page now in primary storage should be removed from

primary storage when some other page needs to be brought in

and there is no free frame

Copyright ©: University of Illinois CS 241 Staff 14

Page Fault Handler

 Find a free frame

 If a free frame exists, use it

 Otherwise, select a victim frame using a page replacement

algorithm

 Write the page in the victim frame to disk and update any

necessary page tables

 Find location of page on disk

 Read the requested page from the disk to the

selected frame

 Return from page fault handler to process

Copyright ©: University of Illinois CS 241 Staff 15

Copy-on-Write

 Copy-on-Write (COW)

 Allows parent and child processes to

initially share the same pages in memory

 If either process modifies a shared page,

only then is the page copied

 More efficient process creation since only

modified pages are copied

Copyright ©: University of Illinois CS 241 Staff 16

Before: Copy on Write

Copyright ©: University of Illinois CS 241 Staff 17

Process 1 Process 2

Page A

Page B

Page C

Physical

Memory

After: Copy on Write

Copyright ©: University of Illinois CS 241 Staff 18

write()

Process 1 Process 2

Page A

Page B

Page C

Physical

Memory

Copy of

Page C

Page Replacement Issues

 No free frames

 Disk read (and possibly read) of pages is

required

 Page to be replaced has not been changed

since it was read in

 Page can be overwritten and does not need to

be copied out to disk

 Be careful before evicting!

 Read-only pages are never written but may be

shared!

Copyright ©: University of Illinois CS 241 Staff 19

Page Replacement Issues

 Dirty bit in each page table entry

 When page brought in from disk, bit reset

 First write to page => bit set

 Bit checked when this frame selected as victim (if set,

save to page before overwriting)

 Reference string

 Set of page numbers generated by a process (via its page

fault handler) over time, e.g., 1, 3, 4, 3, 2, …

 Goal

 Come up with page replace algorithms that minimize

number of page faults (why?)

Copyright ©: University of Illinois CS 241 Staff 20

Page Replacement Strategies

 The Optimal Algorithm

 Among all pages in frames, evict the one

that has its next access farthest into the

future

 Can prove formally this does better than

any other algorithm

 Realistic?

Copyright ©: University of Illinois CS 241 Staff 21

22

The Optimal Page

Replacement Algorithm

 Idea:

 Select the page that will not be needed for the

longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c d

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a a

b b b b

c c c c

d d d d

X

Copyright ©: University of Illinois CS 241 Staff

23

The Optimal Page

Replacement Algorithm

 Idea:

 Select the page that will not be needed for the

longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c d

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a a a a a a a

b b b b b b b b b

c c c c c c c c c

d d d d e e e e e

X X

Copyright ©: University of Illinois CS 241 Staff

24

The Optimal Page

Replacement Algorithm

 Idea:

 Select the page that will not be needed for the

longest time in the future

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c d

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a a a a a a a a

b b b b b b b b b b

c c c c c c c c c c

d d d d e e e e e d

X X

Copyright ©: University of Illinois CS 241 Staff

25

The Optimal Page

Replacement Algorithm

 Idea:

 Select the page that will not be needed for the

longest time in the future

 Problem:

 Can’t know the future of a program

 Can’t know when a given page will be needed

next

 The optimal algorithm is unrealizable

Copyright ©: University of Illinois CS 241 Staff

Principal of Optimality

 If the reference string can be predicted accurately

 Don't use demand paging; use pre-paging

 Allows paging activity of pages needed in the future to be

overlapped with computation

 Optimal provides a basis for comparison with other

schemes

 Is difficult to implement but compilers may help by

providing hints (for a later course)

 For now: try to approximate the optimal strategy with other

page replacement algorithms

Copyright ©: University of Illinois CS 241 Staff 26

Page Replacement Algorithms

 FIFO - first in first out

 Evict the page that has been in primary memory

the longest

 Random

 Choose a victim page randomly

 LRU - least recently used

 Evict the page not used for the longest time in

the past

 Intended as an approximation to the optimal

Copyright ©: University of Illinois CS 241 Staff 27

Page Replacement Algorithms

 LFU - least frequently used

 Evict the page that is used least often

 NUR/NRU - not used recently/not recently

used

 An approximation to LRU

 Working set

 Keep in memory those pages that the process is

actively using

Copyright ©: University of Illinois CS 241 Staff 28

29

FIFO Page Replacement

Algorithm

 Always replace the oldest page

 Example: Memory system with 4 frames

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c a

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a

b

c c c c

d d

X

Copyright ©: University of Illinois CS 241 Staff

30

FIFO Page Replacement

Algorithm

 Always replace the oldest page

 Example: Memory system with 4 frames

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c a

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a a a a a

b b b b b

c c c c e e e e

d d d d d d

X X

Copyright ©: University of Illinois CS 241 Staff

31

FIFO Page Replacement

Algorithm

 Always replace the oldest page

 Example: Memory system with 4 frames

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c a

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a a a a a c

b b b b b b

c c c c e e e e e

d d d d d d d

X X X

Copyright ©: University of Illinois CS 241 Staff

32

FIFO Page Replacement

Algorithm

 Always replace the oldest page

 Example: Memory system with 4 frames

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c a

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a a a a a c c

b b b b b b b

c c c c e e e e e e

d d d d d d d a

X X X

Copyright ©: University of Illinois CS 241 Staff

33

FIFO Page Replacement

Algorithm

 Always replace the oldest page

 Disadvantage

 The oldest page may be needed again soon

 Some page may be important throughout

execution

 Example?

 It will get old, but replacing it will cause an immediate

page fault

Copyright ©: University of Illinois CS 241 Staff

Belady's Anomaly

 Given a reference

string, it would be

natural to assume

that

 The more the total

number of frames in

main memory, the

fewer the number of

page faults Not true for some

algorithms!

 E.g., for FIFO

Copyright ©: University of Illinois CS 241 Staff 34

35

Belady's Anomaly

 Consider FIFO page replacement

 Look at this reference string

 012301401234

 Case 1:

 3 frames available

 Case 2:

 4 frames available

Copyright ©: University of Illinois CS 241 Staff

36

Belady's Anomaly

Copyright ©: University of Illinois CS 241 Staff

0 1

0

2

1

0

3

2

1

0

3

2

1

0

3

4

1

0

4

1

0

4

1

0

2

4

1

3

2

4

3

2

4

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4

FIFO with 3 page frames

P P P P P P P P P

37

Belady's Anomaly

Copyright ©: University of Illinois CS 241 Staff

0 1

0

2

1

0

3

2

1

0

3

2

1

0

3

4

1

0

4

1

0

4

1

0

2

4

1

3

2

4

3

2

4

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4

FIFO with 3 page frames

P P P P P P P P P

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4

FIFO with 4 page frames

P P P P P P P P P

0 1

0

3

2

1

0

3

2

1

0

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

3

2

1

0

4

3

2

1

2

1

0

P

38

Belady's Anomaly

Copyright ©: University of Illinois CS 241 Staff

0 1

0

2

1

0

3

2

1

0

3

2

1

0

3

4

1

0

4

1

0

4

1

0

2

4

1

3

2

4

3

2

4

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4

FIFO with 3 page frames

P P P P P P P P P

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4

FIFO with 4 page frames

P P P P P P P P P

0 1

0

3

2

1

0

3

2

1

0

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

3

2

1

0

4

3

2

1

2

1

0

P

9 page faults

10 page faults

39

Least Recently Used

Algorithm (LRU)

 Keep track of when a page is used

 Replace the page that has been used least

recently

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c d

Page 0 a

Frames 1 b

2 c

3 d

Page faults

Copyright ©: University of Illinois CS 241 Staff

40

Least Recently Used

Algorithm (LRU)

 Keep track of when a page is used

 Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c d

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a a

b b b b

c c c c

d d d d

X

Copyright ©: University of Illinois CS 241 Staff

41

Least Recently Used

Algorithm (LRU)

 Keep track of when a page is used

 Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c d

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a a a a a a

b b b b b b b b

c c c c e e e e

d d d d d d d d

X X

Copyright ©: University of Illinois CS 241 Staff

42

Least Recently Used

Algorithm (LRU)

 Keep track of when a page is used

 Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c d

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a a a a a a a

b b b b b b b b b

c c c c e e e e e

d d d d d d d d c

X X X

Copyright ©: University of Illinois CS 241 Staff

43

Least Recently Used

Algorithm (LRU)

 Keep track of when a page is used

 Replace the page that has been used least

recently (farthest in the past)

Time 0 1 2 3 4 5 6 7 8 9 10

Requests c a d b e b a b c d

Page 0 a

Frames 1 b

2 c

3 d

Page faults

a a a a a a a a a a

b b b b b b b b b b

c c c c e e e e e d

d d d d d d d d c c

X X X

Copyright ©: University of Illinois CS 241 Staff

Least Recently Used Issues

 Not optimal

 Does not suffer from Belady's anomaly

 Implementation

 Use time of last reference

 Update every time page accessed (use system clock)

 Page replacement - search for smallest time

 Use a stack

 On page access : remove from stack, push on top

 Victim selection: select page at bottom of stack

 Both approaches require large processing

overhead, more space, and hardware support.

Copyright ©: University of Illinois CS 241 Staff 44

LRU Approximation Algorithms

 Not used recently/Not recently used

(NUR/NRU)

 Reference Bit in each page table entry

 With each page, associate a bit, initially = 0

 When page is referenced, bit is set to 1

 Victim Selection:

 Any page with reference bit == 0 (if one exists,

otherwise FIFO)

 BUT: Do not know order

Copyright ©: University of Illinois CS 241 Staff 45

LRU Approximation Algorithms

 Additional Reference Bits Algorithm

 Keep n bits for each page in a table in memory

 Each reference sets highest order bit

 Periodically, shift bits right dropping the lowest

bit)

 Use value as 8 bit unsigned integer

 Victim Selection:

 Page with the lowest value of reference counter

 Value may not be unique, use FIFO to resolve conflicts

Copyright ©: University of Illinois CS 241 Staff 46

Second Chance Page

Replacement

 Modification to FIFO

 Pages kept in a linked list

 Oldest is at the front of the list

 Look at the oldest page

 If referenced bit == 0

 Select for replacement

 Else

 Page was recently used -> don’t replace it

 Clear referenced bit

 Move to the end of list

 What if every page was used in last clock tick?

 Select a page at random

Copyright ©: University of Illinois CS 241 Staff 47

Clock Algorithm (Same effect

as Second Chance)

 Maintain a circular list of

pages in memory

 Set reference bit on access

 Clock sweeps over memory

 Look for victim page with

referenced bit unset

 If bit is set, clear it and move

on to next page

 Replace pages that haven’t

been referenced for one

complete clock revolution

Copyright ©: University of Illinois CS 241 Staff 48

