
1

Memory Replacement Policies

Indranil Gupta (Indy)

Copyright ©: University of Illinois CS 241 Staff



Storage Placement Strategies

 Best fit

 Produces the smallest leftover hole

 Creates small holes that cannot be used 

 Worst Fit

 Produces the largest leftover hole

 Difficult to run large programs 

 First Fit

 Creates average size holes 

 Buddy System

 Used in Linux

Copyright ©: University of Illinois CS 241 Staff 2



Buddy System

 Memory allocated using 

power-of-2 allocator

 Satisfy requests in units of 

size power of 2

 Request rounded up to 

next highest power of 2

 When smaller allocation 

needed than is available, 

current chunk split into 

two buddies of next-lower 

power of 2

 Continue until 

appropriate sized chunk 

available

Copyright ©: University of Illinois CS 241 Staff 3



Buddy System

 Approach

 Minimum allocation size = smallest frame

 Use a bitmap to monitor frame use

 Maintain freelist for each possible frame size 

 power of 2 frame sizes from min to max

 Initially one block = entire buffer

 If two neighboring frames (“buddies”) are free, combine 

them and add to next larger freelist

Copyright ©: University of Illinois CS 241 Staff 4



Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 5

128 Free



Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 6

128 Free

Process A requests 16

64 Free 64 Free

32 Free 32 Free

16 A 16 Free 32 Free

64 Free

64 Free



Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 7

128 Free

Process B requests 32

16 A 16 Free 32 Free 64 Free32 B



Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 8

128 Free

Process C requests 8

16 A 16 Free 32 B 64 Free

16 A
8 

C
32 B 64 Free8



Buddy System Example

Copyright ©: University of Illinois CS 241 Staff 9

Process A exits

16 Free
8 

C
32 B 64 Free8



Buddy System Example

 Advantage

 Minimizes external fragmentation

 Disadvantage

 Internal fragmentation when not 2^n request

Copyright ©: University of Illinois CS 241 Staff 10

Process C exits

16 Free 8 32 B 64 Free8

16 Free 32 B 64 Free16 Free

32 B 64 Free32 Free



Virtual Memory Recap

 Main memory 

 Organized into fixed sized frames

 Virtual address space

 Per process

 Split into fixed-sized pages

 Page 

 Size of frame = size of page

 May be brought from disk into a frame in main memory

 Page fault 

 Process accesses a page that is not in main memory

 Trap/interrupt occurs to OS and VM system is invoked

Copyright ©: University of Illinois CS 241 Staff 11



Demand Paging

 Bring a page into memory only when it is needed

 Less I/O needed

 Less memory needed 

 Faster response

 More users

 Page is needed when 

 Process references it

 invalid reference  -> abort

 not-in-memory  -> bring to memory

Copyright ©: University of Illinois CS 241 Staff 12



13

Demand Paging Example

Load M

Free frame

Page

table

VM

ref

Page fault

Frame AddressDRVReference W ERe

Frame AddressDRVReference W ERe

Copyright ©: University of Illinois CS 241 Staff



Demand Paging Policies

 Fetch Strategies 

 When should a page be brought into primary (main) memory 

from secondary (disk) storage. 

 Demand Paging = only when demanded by a process (default)

 Pre-paging = before request by process

 Placement Strategies

 When a page is brought into primary storage, which frame 

should it be placed in? 

 Replacement Strategies

 Which page now in primary storage should be removed from 

primary storage when some other page needs to be brought in 

and there is no free frame

Copyright ©: University of Illinois CS 241 Staff 14



Page Fault Handler

 Find a free frame 

 If a free frame exists, use it

 Otherwise, select a victim frame using a page replacement 

algorithm

 Write the page in the victim frame to disk and update any 

necessary page tables

 Find location of page on disk

 Read the requested page from the disk to the 

selected frame

 Return from page fault handler to process

Copyright ©: University of Illinois CS 241 Staff 15



Copy-on-Write

 Copy-on-Write (COW) 

 Allows parent and child processes to 

initially share the same pages in memory

 If either process modifies a shared page, 

only then is the page copied

 More efficient process creation since only 

modified pages are copied

Copyright ©: University of Illinois CS 241 Staff 16



Before: Copy on Write

Copyright ©: University of Illinois CS 241 Staff 17

Process 1 Process 2

Page A

Page B

Page C

Physical 

Memory



After: Copy on Write

Copyright ©: University of Illinois CS 241 Staff 18

write()

Process 1 Process 2

Page A

Page B

Page C

Physical 

Memory

Copy of 

Page C



Page Replacement Issues

 No free frames 

 Disk read (and possibly read) of  pages is 

required

 Page to be replaced has not been changed 

since it was read in

 Page can be overwritten and does not need to 

be copied out to disk

 Be careful before evicting! 

 Read-only pages are never written but may be 

shared!

Copyright ©: University of Illinois CS 241 Staff 19



Page Replacement Issues

 Dirty bit in each page table entry

 When page brought in from disk, bit reset

 First write to page => bit set

 Bit checked when this frame selected as victim (if set, 

save to page before overwriting)

 Reference string

 Set of page numbers generated by a process (via its page 

fault handler) over time, e.g., 1, 3, 4, 3, 2, …

 Goal

 Come up with page replace algorithms that minimize 

number of page faults (why?)

Copyright ©: University of Illinois CS 241 Staff 20



Page Replacement Strategies

 The Optimal Algorithm

 Among all pages in frames, evict the one 

that has its next access farthest into the 

future

 Can prove formally this does better than 

any other algorithm

 Realistic?

Copyright ©: University of Illinois CS 241 Staff 21



22

The Optimal Page 

Replacement Algorithm

 Idea: 

 Select the page that will not be needed for the 

longest time in the future

Time       0   1   2   3   4   5   6   7   8   9   10

Requests       c   a   d   b   e   b   a   b   c   d

Page   0   a

Frames 1   b

2   c

3   d

Page faults

a   a   a   a   

b   b   b   b   

c   c   c   c   

d   d   d   d   

X 

Copyright ©: University of Illinois CS 241 Staff



23

The Optimal Page 

Replacement Algorithm

 Idea: 

 Select the page that will not be needed for the 

longest time in the future

Time       0   1   2   3   4   5   6   7   8   9   10

Requests       c   a   d   b   e   b   a   b   c   d

Page   0   a

Frames 1   b

2   c

3   d

Page faults

a   a a a a a a a a

b   b b b b b b b b

c   c c c c c c c c

d   d d d e e e e e

X X

Copyright ©: University of Illinois CS 241 Staff



24

The Optimal Page 

Replacement Algorithm

 Idea: 

 Select the page that will not be needed for the 

longest time in the future

Time       0   1   2   3   4   5   6   7   8   9   10

Requests       c   a   d   b   e   b   a   b   c   d

Page   0   a

Frames 1   b

2   c

3   d

Page faults

a   a a a a a a a a a

b   b b b b b b b b b

c   c c c c c c c c c

d   d d d e e e e e d

X X

Copyright ©: University of Illinois CS 241 Staff



25

The Optimal Page 

Replacement Algorithm

 Idea: 

 Select the page that will not be needed for the 

longest time in the future

 Problem:

 Can’t know the future of a program

 Can’t know when a given page will be needed 

next

 The optimal algorithm is unrealizable

Copyright ©: University of Illinois CS 241 Staff



Principal of Optimality

 If the reference string can be predicted accurately

 Don't use demand paging; use pre-paging

 Allows paging activity of pages needed in the future to be 

overlapped with computation

 Optimal provides a basis for comparison with other 

schemes

 Is difficult to implement but compilers may help by 

providing hints (for a later course)

 For now: try to approximate the optimal strategy with other 

page replacement algorithms

Copyright ©: University of Illinois CS 241 Staff 26



Page Replacement Algorithms

 FIFO - first in first out

 Evict the page that has been in primary memory 

the longest

 Random

 Choose a victim page randomly 

 LRU - least recently used

 Evict the page not used for the longest time in 

the past

 Intended as an approximation to the optimal

Copyright ©: University of Illinois CS 241 Staff 27



Page Replacement Algorithms

 LFU - least frequently used

 Evict the page that is used least often

 NUR/NRU - not used recently/not recently 

used

 An approximation to LRU

 Working set

 Keep in memory those pages that the process is 

actively using

Copyright ©: University of Illinois CS 241 Staff 28



29

FIFO Page Replacement 

Algorithm

 Always replace the oldest page

 Example: Memory system with 4 frames

Time       0   1   2   3   4   5   6   7   8   9   10

Requests       c   a   d   b   e   b   a   b   c   a

Page   0   a

Frames 1   b

2   c

3   d

Page faults

a   a   a   

b   

c   c   c   c     

d   d

X

Copyright ©: University of Illinois CS 241 Staff



30

FIFO Page Replacement 

Algorithm

 Always replace the oldest page

 Example: Memory system with 4 frames

Time       0   1   2   3   4   5   6   7   8   9   10

Requests       c   a   d   b   e   b   a   b   c   a

Page   0   a

Frames 1   b

2   c

3   d

Page faults

a   a a a a a a

b   b b b b

c   c c c e e e e

d   d d d d d

X        X

Copyright ©: University of Illinois CS 241 Staff



31

FIFO Page Replacement 

Algorithm

 Always replace the oldest page

 Example: Memory system with 4 frames

Time       0   1   2   3   4   5   6   7   8   9   10

Requests       c   a   d   b   e   b   a   b   c   a

Page   0   a

Frames 1   b

2   c

3   d

Page faults

a   a a a a a a c

b   b b b b b

c   c c c e e e e e

d   d d d d d d

X               X X

Copyright ©: University of Illinois CS 241 Staff



32

FIFO Page Replacement 

Algorithm

 Always replace the oldest page

 Example: Memory system with 4 frames

Time       0   1   2   3   4   5   6   7   8   9   10

Requests       c   a   d   b   e   b   a   b   c   a

Page   0   a

Frames 1   b

2   c

3   d

Page faults

a   a a a a a a c c

b   b b b b b b

c   c c c e e e e e e

d   d d d d d d a

X               X X

Copyright ©: University of Illinois CS 241 Staff



33

FIFO Page Replacement 

Algorithm

 Always replace the oldest page

 Disadvantage

 The oldest page may be needed again soon

 Some page may be important throughout 

execution

 Example?

 It will get old, but replacing it will cause an immediate 

page fault

Copyright ©: University of Illinois CS 241 Staff



Belady's Anomaly

 Given a reference 

string, it would be 

natural to assume 

that 

 The more the total 

number of frames in 

main memory, the 

fewer the number of 

page faults  Not true for some 

algorithms!

 E.g., for FIFO

Copyright ©: University of Illinois CS 241 Staff 34



35

Belady's Anomaly

 Consider FIFO page replacement

 Look at this reference string

 012301401234

 Case 1:

 3 frames available 

 Case 2:

 4 frames available 

Copyright ©: University of Illinois CS 241 Staff



36

Belady's Anomaly

Copyright ©: University of Illinois CS 241 Staff

0 1

0

2

1

0

3

2

1

0

3

2

1

0

3

4

1

0

4

1

0

4

1

0

2

4

1

3

2

4

3

2

4

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4

FIFO with 3 page frames

P P P P P P P P P



37

Belady's Anomaly

Copyright ©: University of Illinois CS 241 Staff

0 1

0

2

1

0

3

2

1

0

3

2

1

0

3

4

1

0

4

1

0

4

1

0

2

4

1

3

2

4

3

2

4

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4

FIFO with 3 page frames

P P P P P P P P P

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4

FIFO with 4 page frames

P P P P P P P P P

0 1

0

3

2

1

0

3

2

1

0

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

3

2

1

0

4

3

2

1

2

1

0

P



38

Belady's Anomaly

Copyright ©: University of Illinois CS 241 Staff

0 1

0

2

1

0

3

2

1

0

3

2

1

0

3

4

1

0

4

1

0

4

1

0

2

4

1

3

2

4

3

2

4

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4

FIFO with 3 page frames

P P P P P P P P P

Youngest Page

Oldest Page

0 1 2 3 0 1 4 0 1 2 3 4

FIFO with 4 page frames

P P P P P P P P P

0 1

0

3

2

1

0

3

2

1

0

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

0

4

3

2

1

3

2

1

0

4

3

2

1

2

1

0

P

9 page faults

10 page faults



39

Least Recently Used 

Algorithm (LRU)

 Keep track of when a page is used

 Replace the page that has been used least 

recently

Time       0   1   2   3   4   5   6   7   8   9   10

Requests       c   a   d   b   e   b   a   b   c   d

Page   0   a

Frames 1   b

2   c

3   d

Page faults

Copyright ©: University of Illinois CS 241 Staff



40

Least Recently Used 

Algorithm (LRU)

 Keep track of when a page is used

 Replace the page that has been used least 

recently (farthest in the past)

Time       0   1   2   3   4   5   6   7   8   9   10

Requests       c   a   d   b   e   b   a   b   c   d

Page   0   a

Frames 1   b

2   c

3   d

Page faults

a   a a a

b   b b b

c   c c c

d   d d d

X

Copyright ©: University of Illinois CS 241 Staff



41

Least Recently Used 

Algorithm (LRU)

 Keep track of when a page is used

 Replace the page that has been used least 

recently (farthest in the past)

Time       0   1   2   3   4   5   6   7   8   9   10

Requests       c   a   d   b   e   b   a   b   c   d

Page   0   a

Frames 1   b

2   c

3   d

Page faults

a   a a a a a a a

b   b b b b b b b

c   c c c e e e e

d   d d d d d d d

X               X

Copyright ©: University of Illinois CS 241 Staff



42

Least Recently Used 

Algorithm (LRU)

 Keep track of when a page is used

 Replace the page that has been used least 

recently (farthest in the past)

Time       0   1   2   3   4   5   6   7   8   9   10

Requests       c   a   d   b   e   b   a   b   c   d

Page   0   a

Frames 1   b

2   c

3   d

Page faults

a   a a a a a a a a

b   b b b b b b b b

c   c c c e e e e e

d   d d d d d d d c

X               X X

Copyright ©: University of Illinois CS 241 Staff



43

Least Recently Used 

Algorithm (LRU)

 Keep track of when a page is used

 Replace the page that has been used least 

recently (farthest in the past)

Time       0   1   2   3   4   5   6   7   8   9   10

Requests       c   a   d   b   e   b   a   b   c   d

Page   0   a

Frames 1   b

2   c

3   d

Page faults

a   a a a a a a a a a

b   b b b b b b b b b

c   c c c e e e e e d 

d   d d d d d d d c c

X               X X

Copyright ©: University of Illinois CS 241 Staff



Least Recently Used Issues

 Not optimal

 Does not suffer from Belady's anomaly

 Implementation

 Use time of last reference

 Update every time page accessed (use system clock)

 Page replacement - search for smallest time 

 Use a stack 

 On page access : remove from stack, push on top

 Victim selection: select page at bottom of stack

 Both approaches require large processing 

overhead, more space, and hardware support. 

Copyright ©: University of Illinois CS 241 Staff 44



LRU Approximation Algorithms

 Not used recently/Not recently used 

(NUR/NRU)

 Reference Bit in each page table entry

 With each page, associate a bit, initially = 0

 When page is referenced, bit is set to 1

 Victim Selection: 

 Any page with reference bit == 0 (if one exists, 

otherwise FIFO)

 BUT: Do not know order

Copyright ©: University of Illinois CS 241 Staff 45



LRU Approximation Algorithms

 Additional Reference Bits Algorithm

 Keep n bits for each page in a table in memory 

 Each reference sets highest order bit

 Periodically, shift bits right dropping the lowest 

bit)

 Use value as 8 bit unsigned integer

 Victim Selection:

 Page with the lowest value of reference counter

 Value may not be unique, use FIFO to resolve conflicts

Copyright ©: University of Illinois CS 241 Staff 46



Second Chance Page 

Replacement

 Modification to FIFO

 Pages kept in a linked list

 Oldest is at the front of the list

 Look at the oldest page

 If referenced bit == 0

 Select for replacement

 Else

 Page was recently used -> don’t replace it

 Clear referenced bit

 Move to the end of list

 What if every page was used in last clock tick?

 Select a page at random

Copyright ©: University of Illinois CS 241 Staff 47



Clock Algorithm (Same effect 

as Second Chance)

 Maintain a circular list of 

pages in memory

 Set reference bit on access

 Clock sweeps over memory 

 Look for victim page with 

referenced bit unset

 If bit is set, clear it and move 

on to next page

 Replace pages that haven’t 

been referenced for one 

complete clock revolution

Copyright ©: University of Illinois CS 241 Staff 48


