
Copyright ©: University of Illinois CS 241 Staff 1

Memory

Limitations of Swapping

 Problems with swapping

 Process must fit into physical memory

(impossible to run larger processes)

 Memory becomes fragmented

 External fragmentation

 Lots of small free areas

 Compaction

 Reassemble larger free areas

 Processes are either in memory or on disk: half

and half doesn’t do any good

Copyright ©: University of Illinois CS 241 Staff 2

Virtual memory

 Basic idea
 Allow the OS to hand out more memory than

exists on the system

 Keep recently used stuff in physical memory

 Move less recently used stuff to disk

 Keep all of this hidden from processes

 Process view
 Processes still see an address space from 0 –

max address

 Movement of information to and from disk
handled by the OS without process help

Copyright ©: University of Illinois CS 241 Staff 3

Benefits of Virtual Memory

 Especially helpful in multiprogrammed system

 CPU schedules process B while process A waits for its

memory to be retrieved from disk

 Use secondary storage($)

 Extend DRAM($$$) with reasonable performance

 Protection

 Programs do not step over each other

Copyright ©: University of Illinois CS 241 Staff 4

Benefits of Virtual Memory

 Convenience

 Flat address space

 Programs have the same view of the world

 Load and store cached virtual memory without user

program intervention

 Reduce fragmentation

 Make cacheable units all the same size (page)

Copyright ©: University of Illinois CS 241 Staff 5

Paging

 Paging is how an OS achieves VM

 Goal

 Provide user with virtual memory that is as big

as user needs

 Implementation

 Store virtual memory on disk

 Cache parts of virtual memory being used in real

memory

 Load and store cached virtual memory without

user program intervention

Copyright ©: University of Illinois CS 241 Staff 6

Page Faults

 What happens when a program accesses a virtual

page that is not mapped into any physical page?

 Hardware triggers a page fault

 Page fault handler

 Find any available free physical page

 If none, evict some resident page to disk

 Allocate a free physical page

 Load the faulted virtual page to the prepared physical

page

 Modify the page table

Copyright ©: University of Illinois CS 241 Staff 7

Paging Request

Copyright ©: University of Illinois CS 241 Staff 8

3 1

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryRequest Address within

Virtual Memory Page 3

Paging Request

Copyright ©: University of Illinois CS 241 Staff 9

3 1

1 2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryRequest Address within

Virtual Memory Page 1

Paging Request

Copyright ©: University of Illinois CS 241 Staff 10

3 1

1

6

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryRequest Address within

Virtual Memory Page 6

Paging Request

Copyright ©: University of Illinois CS 241 Staff 11

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryRequest Address within

Virtual Memory Page 2

Paging Request

Copyright ©: University of Illinois CS 241 Staff 12

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryRequest Address within

Virtual Memory Page 8

What happens when there

is no more space in the

cache?

Paging Request

Copyright ©: University of Illinois CS 241 Staff 13

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryStore Virtual Memory

Page 1 to disk

Paging Request

Copyright ©: University of Illinois CS 241 Staff 14

3 1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryProcess request for Address
within Virtual Memory Page 8

Paging Request

Copyright ©: University of Illinois CS 241 Staff 15

3 1

8

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryLoad Virtual Memory

Page 8 to cache

Address Translation Scheme

 Address generated by CPU is divided into

 Page number (p)
 An index into a page table

 Contains base address of each

page in physical memory

 Page offset (d)
 Combined with base address

 Defines the physical memory

address that is sent to the

memory unit

For given logical address space 2m and page size 2n

P1 P2 D

Page

Number

Page

Offset

m - n n

16Copyright ©: University of Illinois CS 241 Staff

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 17

P D

P F

0
1
0
1
1
0
1

Page Table

Virtual Memory

Physical Memory

Physical Address (F,D)

P

F

D

D

P

Virtual Address

(P,D)

F D

Contents(F,D)

Contents(P,D)

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 18

Contents(4006)

Contents(5006)

004 006

005 006

4 5

0
1
0
1
1
0
1

Page Table

Virtual Memory

Physical Memory

Virtual Address

(004006)

Physical Address (F,D)

004

005

006

006

4

Page size 1000

Number of Possible Virtual Pages 1000

Number of Page Frames 8

Paging Issues

 Page size

 Typically 2n

 usually 512, 1k, 2k, 4k, or 8k

 Example

 32 bit VM address may have 220 (1 meg)

pages with 4k (212) bytes per page

 220 (1 meg) 32 bit page entries take 222 bytes

(4 meg)

 Page frames must map into real memory

Copyright ©: University of Illinois CS 241 Staff 19

Paging Issues

 Physical memory size: 32 MB (225)

 Page size 4K bytes

 How many pages?

 213

 NO external fragmentation

 Internal fragmentation on last page ONLY

Copyright ©: University of Illinois CS 241 Staff 20

Discussion

 How can paging be made faster?

 Mapping must be done for every reference

 More memory = more pages!

 Hardware registers (one per page)

 Keep page table in memory

 Is one level of paging sufficient?

 Sharing and protections?

Copyright ©: University of Illinois CS 241 Staff 21

Paging - Caching the Page

Table

 Cache page table in registers

 Keep page table in memory

 Location given by a page table base

register

 Page table base register changed at

context switch time

Copyright ©: University of Illinois CS 241 Staff 22

Paging Implementation Issues

 Caching scheme

 Associative registers, look-aside memory or content-

addressable memory

 Translation-lookaside-buffer (TLB)

 Page address cache (TLB) hit ratio

 Percentage of time page found in associative memory

 Cache miss

 If not found in associative memory, must load from page

tables

 Requires additional memory reference

Copyright ©: University of Illinois CS 241 Staff 23

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 24

P D

F D

P F

0
1
0
1
1
0
1

Page Table

Virtual Memory Address (P,D)

Physical Address (F,D)

P

Associative Look Up

P F

First

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 25

004 006

009 006

004 009

0
1
0
1
1
0
1

Page Table

Virtual Memory Address (P,D)

Physical Address (F,D)

4

Associative Look Up
1 12
7

19
3

6
3
7

First

Table organized by

LRU

First access, retrieve page from page table

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 26

004 006

009 006

004 009

0
1
0
1
1
0
1

Page Table

Virtual Memory Address (P,D)

Physical Address (F,D)

4

Associative Look Up
1 12
4

19
3

9
3
7

First

Table organized by

LRU

Second access, retrieve page from associative registers.

Addressing on Two-Level

Page Table

 32-bit Architecture

 4096= 212 B Page

 4K Page of Logical

Memory

 4096 addressable

bytes

 Page the Page Table

 4K pages as well

 1024 addressable

4byte addresses

P1 P2 D

Page

Number

Page

Offset

12 10 10

28Copyright ©: University of Illinois CS 241 Staff

Two-Level Page-Table

29Copyright ©: University of Illinois CS 241 Staff

Addressing on Two-Level

Page Table

page number

p d

page offset

0

1

p-1

p

p+1

f

f d

Page frame number

.

.

.

page table

physical memory

0

1

.

.

.

f-1

f

f+1

f+2
.
.
.

Page frame number

CPU

30Copyright ©: University of Illinois CS 241 Staff

Newer Architectures

 64-bit Architecture

 Address space: 264 B

 Page size: 4096 B

 Page table size: 252

 For 8B entries, need 30 Million GB!

 Approach

 Have enough entries to match the number of page frames

 Smaller page table

Copyright ©: University of Illinois CS 241 Staff 31

Sharing Pages

 Shared code

 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).

 Shared code must appear in same location in the logical

address space of all processes

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear

anywhere in the logical address space

34Copyright ©: University of Illinois CS 241 Staff

Shared Pages

35Copyright ©: University of Illinois CS 241 Staff

Page Protection

 Can add read, write, execute protection bits to page

table to protect memory

 Check is done by hardware during access

 Can give shared memory location different protections

from different processes by having different page table

protection access bits

 Valid-invalid bit attached to each entry in the page

table

 “valid” indicates that the associated page is in the process’

logical address space

 “invalid” indicates that the page is not in the process’

logical address space

36Copyright ©: University of Illinois CS 241 Staff

Page Protection

 Reference page has been accessed

 Valid page exists

 Resident page is cached in primary

memory

 Dirty page has changed

since page in

Frame AddressDRVReference

DirtyResidentValid

W ERe

ExecuteWrite Read

37Copyright ©: University of Illinois CS 241 Staff

Demand Paging

 Never bring a page into primary memory until its

needed

 Fetch Strategies

 When should a page be brought into primary (main)

memory from secondary (disk) storage.

 Placement Strategies

 When a page is brought into primary storage, where

should it be put?

 Replacement Strategies

 Which page now in primary storage should be removed

from primary storage when some other page or segment

needs to be brought in and there is not enough room

38Copyright ©: University of Illinois CS 241 Staff

Issue: Eviction

 Hopefully, kick out a less-useful page

 Dirty pages require writing, clean pages don’t

 Where do you write? To “swap space”

 Goal: kick out the page that’s least useful

 Problem: how do you determine utility?

 Heuristic: temporal locality exists

 Kick out pages that aren’t likely to be used again

39Copyright ©: University of Illinois CS 241 Staff

Principal of Optimality

 Definition

 Each page is labeled with the number of instructions that

will be executed before that page is first referenced

 The optimal page replacement algorithm: choose the page

with the highest label to be removed from the memory.

 Impractical: requires knowledge of future references

 If future references are known

 should use pre paging to allow paging to be overlapped

with computation.

40Copyright ©: University of Illinois CS 241 Staff

Page Replacement Strategies

 Random page

replacement

 Choose a page randomly

 FIFO - First in First Out

 Replace the page that has

been in primary memory the

longest

 LRU - Least Recently

Used

 Replace the page that has

not been used for the

longest time

 LFU - Least Frequently

Used

 Replace the page that is

used least often

 NRU - Not Recently

Used

 An approximation to LRU.

 Working Set

 Keep in memory those

pages that the process is

actively using.

41Copyright ©: University of Illinois CS 241 Staff

