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Memory  



Limitations of Swapping

 Problems with swapping

 Process must fit into physical memory 

(impossible to run larger processes)

 Memory becomes fragmented

 External fragmentation

 Lots of small free areas

 Compaction 

 Reassemble larger free areas

 Processes are either in memory or on disk: half 

and half doesn’t do any good
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Virtual memory

 Basic idea
 Allow the OS to hand out more memory than 

exists on the system

 Keep recently used stuff in physical memory

 Move less recently used stuff to disk

 Keep all of this hidden from processes

 Process view
 Processes still see an address space from 0 –

max address

 Movement of information to and from disk 
handled by the OS without process help
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Benefits of Virtual Memory

 Especially helpful in multiprogrammed system

 CPU schedules process B while process A waits for its 

memory to be retrieved from disk

 Use secondary storage($)

 Extend DRAM($$$) with reasonable performance

 Protection

 Programs do not step over each other

Copyright ©: University of Illinois CS 241 Staff 4



Benefits of Virtual Memory

 Convenience

 Flat address space

 Programs have the same view of the world

 Load and store cached virtual memory without user 

program intervention 

 Reduce fragmentation

 Make cacheable units all the same size (page)
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Paging

 Paging is how an OS achieves VM

 Goal

 Provide user with virtual memory that is as big 

as user needs

 Implementation

 Store virtual memory on disk

 Cache parts of virtual memory being used in real 

memory

 Load and store cached virtual memory without 

user program intervention
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Page Faults

 What happens when a program accesses a virtual 

page that is not mapped into any physical page?

 Hardware triggers a page fault

 Page fault handler

 Find any available free physical page

 If none, evict some resident page to disk

 Allocate a free physical page

 Load the faulted virtual page to the prepared physical 

page

 Modify the page table
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Paging Request
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Paging Request

Copyright ©: University of Illinois CS 241 Staff 13

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryStore Virtual Memory 

Page 1 to disk



Paging Request

Copyright ©: University of Illinois CS 241 Staff 14

3 1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryProcess request for Address 
within Virtual Memory Page 8



Paging Request
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Address Translation Scheme

 Address generated by CPU is divided into

 Page number (p) 
 An index into a page table 

 Contains base address of each 

page in physical memory

 Page offset (d) 
 Combined with base address 

 Defines the physical memory 

address that is sent to the 

memory unit

For given logical address space 2m and page size 2n
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Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 17

P D

P  F

0
1
0
1
1
0
1

Page Table

Virtual Memory

Physical Memory

Physical Address (F,D)

P

F

D

D

P

Virtual Address 

(P,D)

F D

Contents(F,D)

Contents(P,D)



Page Mapping Hardware
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Paging Issues

 Page size

 Typically 2n

 usually 512, 1k, 2k, 4k, or 8k

 Example 

 32 bit VM address may have  220 (1 meg) 

pages with 4k (212) bytes per page

 220 (1 meg) 32 bit page entries take 222 bytes 

(4 meg)

 Page frames must map into real memory
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Paging Issues

 Physical memory size:  32 MB (225) 

 Page size 4K bytes

 How many pages?      

 213

 NO external fragmentation

 Internal fragmentation on last page ONLY 
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Discussion

 How can paging be made faster?

 Mapping must be done for every reference

 More memory = more pages!

 Hardware registers (one per page)

 Keep page table in memory

 Is one level of paging sufficient?

 Sharing and protections?
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Paging - Caching the Page 

Table

 Cache page table in registers  

 Keep page table in memory 

 Location given by a page table base 

register

 Page table base register changed at 

context switch time
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Paging Implementation Issues

 Caching scheme

 Associative registers, look-aside memory or content-

addressable memory

 Translation-lookaside-buffer (TLB)

 Page address cache (TLB) hit ratio

 Percentage of time page found in associative memory 

 Cache miss

 If not found in associative memory, must load from page 

tables

 Requires additional memory reference
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Page Mapping Hardware
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Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 25

004 006

009 006

004  009

0
1
0
1
1
0
1

Page Table

Virtual Memory Address (P,D)

Physical Address (F,D)

4

Associative Look Up
1 12
7

19
3

6
3
7

First

Table organized by

LRU

First access, retrieve page from page table



Page Mapping Hardware
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Addressing on Two-Level 

Page Table

 32-bit Architecture

 4096= 212 B Page

 4K Page of Logical 

Memory 

 4096 addressable 

bytes

 Page the Page Table 

 4K pages as well 

 1024 addressable 

4byte addresses
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Two-Level Page-Table
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Addressing on Two-Level 

Page Table

page number

p d

page offset

0

1

p-1

p

p+1

f

f d

Page frame number

.

.

.

page table

physical memory

0

1

.

.

.

f-1

f

f+1

f+2
.
.
.

Page frame number

CPU

30Copyright ©: University of Illinois CS 241 Staff



Newer Architectures

 64-bit Architecture

 Address space: 264 B

 Page size: 4096 B

 Page table size: 252

 For 8B entries, need 30 Million GB!

 Approach

 Have enough entries to match the number of page frames

 Smaller page table
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Sharing Pages

 Shared code

 One copy of read-only (reentrant) code shared among 

processes (i.e., text editors, compilers, window systems).

 Shared code must appear in same location in the logical 

address space of all processes

 Private code and data 

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear 

anywhere in the logical address space
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Shared Pages
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Page Protection

 Can add read, write, execute protection bits to page 

table to protect memory

 Check is done by hardware during access

 Can give shared memory location different protections 

from different processes by having different page table 

protection access bits

 Valid-invalid bit attached to each entry in the page 

table

 “valid” indicates that the associated page is in the process’ 

logical address space

 “invalid” indicates that the page is not in the process’ 

logical address space
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Page Protection 

 Reference page has been accessed

 Valid page exists

 Resident page is cached in primary

memory

 Dirty page has changed

since page in 

Frame AddressDRVReference

DirtyResidentValid

W ERe

ExecuteWrite Read
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Demand Paging

 Never bring a page into primary memory until its 

needed

 Fetch Strategies 

 When should a page be brought into primary (main) 

memory from secondary (disk) storage. 

 Placement Strategies

 When a page is brought into primary storage, where 

should it be put? 

 Replacement Strategies

 Which page now in primary storage should be removed 

from primary storage when some other page or segment 

needs to be brought in and there is not enough room
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Issue: Eviction

 Hopefully, kick out a less-useful page

 Dirty pages require writing, clean pages don’t

 Where do you write? To “swap space”

 Goal: kick out the page that’s least useful

 Problem: how do you determine utility?

 Heuristic: temporal locality exists

 Kick out pages that aren’t likely to be used again
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Principal of Optimality 

 Definition

 Each page is labeled with the number of instructions that 

will be executed before that page is first referenced

 The optimal page replacement algorithm: choose the page 

with the highest label to be removed from the memory. 

 Impractical: requires knowledge of future references

 If future references are known

 should use pre paging to allow paging to be overlapped 

with computation. 
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Page Replacement Strategies

 Random page 

replacement 

 Choose a page randomly 

 FIFO - First in First Out 

 Replace the page that has 

been in primary memory the 

longest 

 LRU - Least Recently 

Used 

 Replace the page that has 

not been used for the 

longest time 

 LFU - Least Frequently 

Used 

 Replace the page that is 

used least often 

 NRU - Not Recently 

Used 

 An approximation to LRU. 

 Working Set 

 Keep in memory those 

pages that the process is 

actively using. 
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