
Copyright ©: University of Illinois CS 241 Staff 1

Memory

Limitations of Swapping

 Problems with swapping

 Process must fit into physical memory

(impossible to run larger processes)

 Memory becomes fragmented

 External fragmentation

 Lots of small free areas

 Compaction

 Reassemble larger free areas

 Processes are either in memory or on disk: half

and half doesn’t do any good

Copyright ©: University of Illinois CS 241 Staff 2

Virtual memory

 Basic idea
 Allow the OS to hand out more memory than

exists on the system

 Keep recently used stuff in physical memory

 Move less recently used stuff to disk

 Keep all of this hidden from processes

 Process view
 Processes still see an address space from 0 –

max address

 Movement of information to and from disk
handled by the OS without process help

Copyright ©: University of Illinois CS 241 Staff 3

Benefits of Virtual Memory

 Especially helpful in multiprogrammed system

 CPU schedules process B while process A waits for its

memory to be retrieved from disk

 Use secondary storage($)

 Extend DRAM($$$) with reasonable performance

 Protection

 Programs do not step over each other

Copyright ©: University of Illinois CS 241 Staff 4

Benefits of Virtual Memory

 Convenience

 Flat address space

 Programs have the same view of the world

 Load and store cached virtual memory without user

program intervention

 Reduce fragmentation

 Make cacheable units all the same size (page)

Copyright ©: University of Illinois CS 241 Staff 5

Paging

 Paging is how an OS achieves VM

 Goal

 Provide user with virtual memory that is as big

as user needs

 Implementation

 Store virtual memory on disk

 Cache parts of virtual memory being used in real

memory

 Load and store cached virtual memory without

user program intervention

Copyright ©: University of Illinois CS 241 Staff 6

Page Faults

 What happens when a program accesses a virtual

page that is not mapped into any physical page?

 Hardware triggers a page fault

 Page fault handler

 Find any available free physical page

 If none, evict some resident page to disk

 Allocate a free physical page

 Load the faulted virtual page to the prepared physical

page

 Modify the page table

Copyright ©: University of Illinois CS 241 Staff 7

Paging Request

Copyright ©: University of Illinois CS 241 Staff 8

3 1

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryRequest Address within

Virtual Memory Page 3

Paging Request

Copyright ©: University of Illinois CS 241 Staff 9

3 1

1 2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryRequest Address within

Virtual Memory Page 1

Paging Request

Copyright ©: University of Illinois CS 241 Staff 10

3 1

1

6

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryRequest Address within

Virtual Memory Page 6

Paging Request

Copyright ©: University of Illinois CS 241 Staff 11

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryRequest Address within

Virtual Memory Page 2

Paging Request

Copyright ©: University of Illinois CS 241 Staff 12

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryRequest Address within

Virtual Memory Page 8

What happens when there

is no more space in the

cache?

Paging Request

Copyright ©: University of Illinois CS 241 Staff 13

3 1

1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryStore Virtual Memory

Page 1 to disk

Paging Request

Copyright ©: University of Illinois CS 241 Staff 14

3 1

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryProcess request for Address
within Virtual Memory Page 8

Paging Request

Copyright ©: University of Illinois CS 241 Staff 15

3 1

8

6

2

2

3

4

Disk

Cache

Virtual Memory Stored on Disk

1 2 3 4 5 6 7 8

1 2 3 4

1

2

3

4

Page Table

VM Frame

Real MemoryLoad Virtual Memory

Page 8 to cache

Address Translation Scheme

 Address generated by CPU is divided into

 Page number (p)
 An index into a page table

 Contains base address of each

page in physical memory

 Page offset (d)
 Combined with base address

 Defines the physical memory

address that is sent to the

memory unit

For given logical address space 2m and page size 2n

P1 P2 D

Page

Number

Page

Offset

m - n n

16Copyright ©: University of Illinois CS 241 Staff

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 17

P D

P  F

0
1
0
1
1
0
1

Page Table

Virtual Memory

Physical Memory

Physical Address (F,D)

P

F

D

D

P

Virtual Address

(P,D)

F D

Contents(F,D)

Contents(P,D)

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 18

Contents(4006)

Contents(5006)

004 006

005 006

4  5

0
1
0
1
1
0
1

Page Table

Virtual Memory

Physical Memory

Virtual Address

(004006)

Physical Address (F,D)

004

005

006

006

4

Page size 1000

Number of Possible Virtual Pages 1000

Number of Page Frames 8

Paging Issues

 Page size

 Typically 2n

 usually 512, 1k, 2k, 4k, or 8k

 Example

 32 bit VM address may have 220 (1 meg)

pages with 4k (212) bytes per page

 220 (1 meg) 32 bit page entries take 222 bytes

(4 meg)

 Page frames must map into real memory

Copyright ©: University of Illinois CS 241 Staff 19

Paging Issues

 Physical memory size: 32 MB (225)

 Page size 4K bytes

 How many pages?

 213

 NO external fragmentation

 Internal fragmentation on last page ONLY

Copyright ©: University of Illinois CS 241 Staff 20

Discussion

 How can paging be made faster?

 Mapping must be done for every reference

 More memory = more pages!

 Hardware registers (one per page)

 Keep page table in memory

 Is one level of paging sufficient?

 Sharing and protections?

Copyright ©: University of Illinois CS 241 Staff 21

Paging - Caching the Page

Table

 Cache page table in registers

 Keep page table in memory

 Location given by a page table base

register

 Page table base register changed at

context switch time

Copyright ©: University of Illinois CS 241 Staff 22

Paging Implementation Issues

 Caching scheme

 Associative registers, look-aside memory or content-

addressable memory

 Translation-lookaside-buffer (TLB)

 Page address cache (TLB) hit ratio

 Percentage of time page found in associative memory

 Cache miss

 If not found in associative memory, must load from page

tables

 Requires additional memory reference

Copyright ©: University of Illinois CS 241 Staff 23

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 24

P D

F D

P  F

0
1
0
1
1
0
1

Page Table

Virtual Memory Address (P,D)

Physical Address (F,D)

P

Associative Look Up

P F

First

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 25

004 006

009 006

004  009

0
1
0
1
1
0
1

Page Table

Virtual Memory Address (P,D)

Physical Address (F,D)

4

Associative Look Up
1 12
7

19
3

6
3
7

First

Table organized by

LRU

First access, retrieve page from page table

Page Mapping Hardware

Copyright ©: University of Illinois CS 241 Staff 26

004 006

009 006

004  009

0
1
0
1
1
0
1

Page Table

Virtual Memory Address (P,D)

Physical Address (F,D)

4

Associative Look Up
1 12
4

19
3

9
3
7

First

Table organized by

LRU

Second access, retrieve page from associative registers.

Addressing on Two-Level

Page Table

 32-bit Architecture

 4096= 212 B Page

 4K Page of Logical

Memory

 4096 addressable

bytes

 Page the Page Table

 4K pages as well

 1024 addressable

4byte addresses

P1 P2 D

Page

Number

Page

Offset

12 10 10

28Copyright ©: University of Illinois CS 241 Staff

Two-Level Page-Table

29Copyright ©: University of Illinois CS 241 Staff

Addressing on Two-Level

Page Table

page number

p d

page offset

0

1

p-1

p

p+1

f

f d

Page frame number

.

.

.

page table

physical memory

0

1

.

.

.

f-1

f

f+1

f+2
.
.
.

Page frame number

CPU

30Copyright ©: University of Illinois CS 241 Staff

Newer Architectures

 64-bit Architecture

 Address space: 264 B

 Page size: 4096 B

 Page table size: 252

 For 8B entries, need 30 Million GB!

 Approach

 Have enough entries to match the number of page frames

 Smaller page table

Copyright ©: University of Illinois CS 241 Staff 31

Sharing Pages

 Shared code

 One copy of read-only (reentrant) code shared among

processes (i.e., text editors, compilers, window systems).

 Shared code must appear in same location in the logical

address space of all processes

 Private code and data

 Each process keeps a separate copy of the code and data

 The pages for the private code and data can appear

anywhere in the logical address space

34Copyright ©: University of Illinois CS 241 Staff

Shared Pages

35Copyright ©: University of Illinois CS 241 Staff

Page Protection

 Can add read, write, execute protection bits to page

table to protect memory

 Check is done by hardware during access

 Can give shared memory location different protections

from different processes by having different page table

protection access bits

 Valid-invalid bit attached to each entry in the page

table

 “valid” indicates that the associated page is in the process’

logical address space

 “invalid” indicates that the page is not in the process’

logical address space

36Copyright ©: University of Illinois CS 241 Staff

Page Protection

 Reference page has been accessed

 Valid page exists

 Resident page is cached in primary

memory

 Dirty page has changed

since page in

Frame AddressDRVReference

DirtyResidentValid

W ERe

ExecuteWrite Read

37Copyright ©: University of Illinois CS 241 Staff

Demand Paging

 Never bring a page into primary memory until its

needed

 Fetch Strategies

 When should a page be brought into primary (main)

memory from secondary (disk) storage.

 Placement Strategies

 When a page is brought into primary storage, where

should it be put?

 Replacement Strategies

 Which page now in primary storage should be removed

from primary storage when some other page or segment

needs to be brought in and there is not enough room

38Copyright ©: University of Illinois CS 241 Staff

Issue: Eviction

 Hopefully, kick out a less-useful page

 Dirty pages require writing, clean pages don’t

 Where do you write? To “swap space”

 Goal: kick out the page that’s least useful

 Problem: how do you determine utility?

 Heuristic: temporal locality exists

 Kick out pages that aren’t likely to be used again

39Copyright ©: University of Illinois CS 241 Staff

Principal of Optimality

 Definition

 Each page is labeled with the number of instructions that

will be executed before that page is first referenced

 The optimal page replacement algorithm: choose the page

with the highest label to be removed from the memory.

 Impractical: requires knowledge of future references

 If future references are known

 should use pre paging to allow paging to be overlapped

with computation.

40Copyright ©: University of Illinois CS 241 Staff

Page Replacement Strategies

 Random page

replacement

 Choose a page randomly

 FIFO - First in First Out

 Replace the page that has

been in primary memory the

longest

 LRU - Least Recently

Used

 Replace the page that has

not been used for the

longest time

 LFU - Least Frequently

Used

 Replace the page that is

used least often

 NRU - Not Recently

Used

 An approximation to LRU.

 Working Set

 Keep in memory those

pages that the process is

actively using.

41Copyright ©: University of Illinois CS 241 Staff

