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Memory  



Memory

Learning Objectives

 Overlays & Fixed Partitions

 Internal Fragmentation

 Why separate queues are inefficient

 Virtual Addresses

 Relocation using Base Register 

 Dynamic contiguous allocation 

 Bitmaps versus linked lists

 Allocation Schemes (Best,First, Worst, Next)
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Memory Management

 The ideal world has memory that is

 Very large

 Very fast

 Very cheap

 Non-volatile (doesn’t go away when power is turned off)

 The real world has memory that is

 Very large

 Very fast

 Affordable!

 Pick any two…

 Memory management goal

 Make the real world look as much like the ideal world as possible
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Memory Management

 Goal

 Layout the programs in memory as 

needed

 Potential issues

 Utilization

 Protection

 Flexibility 
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Space Constraints

 Problem

 Not enough memory to keep all 

application data

 One solution

 Overlays: keep only important 

instructions and data in memory
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Overlays
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Overlays
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Mulitple Fixed Partitions
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Multiple Fixed Partitions
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Fixed Partition 

Implementation

 Separate input queue 

for each partition

 Put incoming jobs into 

separate partition 

queues

 Requires sorting the 

incoming jobs and 

putting them into 

separate queues

 Inefficient utilization of 

memory 

 Small jobs still wait
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Fixed Partition 

Implementation

 Solution: One single 

input queue for all 

partitions. 

 Allocate a partition 

where the job fits 

and use…

 Best Fit 

 Worst Fit

 First Fit 
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Virtual addresses

 "Any programming problem can be solved 

by adding a level of indirection.“

 Logical address

 Address generated by the CPU

 Virtual address

 Physical address

 Address seen by the memory unit
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Virtual addresses

 Different jobs will run at different addresses

 When a program is linked, the linker must know 

at what address the program will begin in 

memory

 Program never sees physical address

 Correct starting address when a program starts 

in memory 
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Base Register

 Logical or "Virtual" 

addresses

 Logical address 

space

 Range: 0 to max

 How

 Memory-management unit (MMU)

 Map virtual to physical addresses

 Relocation register 

 Mapping requires hardware (MMU) with the base register

 Physical addresses

 Physical address space

 Range: R+0 to R+max

for base value R
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MMU

Relocation Register
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MMU

Relocation Register
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Protection

 Problem

 How to prevent a malicious process from 

writing or jumping into other user's or OS 

partitions

 Solution

 Base bounds registers 
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Base Bounds Registers
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Memory Management

 Goal

 Keep track of free / allocated memory regions

 Mechanisms

 Bitmaps

 One bit in map corresponds to a fixed-size region of 

memory

 Linked lists

 Each entry in the list corresponds to a contiguous 

region of memory
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Bit Maps and Linked Lists

 Part of memory with 5 processes, 3 holes

 Tick marks show allocation units

 Green regions are free
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Bit Maps and Linked Lists

 Part of memory with 5 processes, 3 holes

 Tick marks show allocation units

 Green regions are free
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Bit Maps and Linked Lists

 Part of memory with 5 processes, 3 holes

 Tick marks show allocation units

 Green regions are free
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Partition Allocation schemes

 Bitmap vs. link list

 Which one occupies more space?

 Depends on the individual memory allocation scenario

 In most cases, bitmap usually occupies more space

 Which one is faster to reclaim freed space?

 On average, bitmap is faster because it just needs to 

set the corresponding bits

 Which one is faster to find a free hole?

 On average, a link list is faster because we can link all 

free holes together
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Storage Placement Strategies

 First fit

 Use the first available hole whose size is sufficient to meet 

the need

 Rationale?

 Best fit

 Use the hole whose size is equal to the need, or if none is 

equal, the hole that is larger but closest in size

 Rationale?

 Worst fit

 Use the largest available hole

 Rationale?
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Example

 Consider a swapping system in which 

memory consists of the following hole sizes 

in memory order: 

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K. 

 Which hole is taken for successive segment 

requests of:

 12K

 10K

 9K 
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Example

 Consider a swapping system in which 

memory consists of the following hole sizes 

in memory order: 

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K. 

 Which hole is taken for successive segment 

requests of:

 12K

 10K

 9K 
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First fit: 

20K, 10K, 

18K.

Best fit: 

12K, 10K, 

9K.

Worst fit: 

20K, 18K, 

and 15K.



Storage Placement Strategies

 Best fit

 Produces the smallest leftover hole

 Creates small holes that cannot be used 

 Worst Fit

 Produces the largest leftover hole

 Difficult to run large programs 

 First Fit

 Creates average size holes 

 First-fit and best-fit better than worst-fit in terms of 

speed and storage utilization
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Fragmentation

 External Fragmentation 

 Memory space exists to satisfy a request, 

but it is not contiguous

 Internal Fragmentation 

 Allocated memory may be slightly larger 

than requested memory

 The size difference is memory internal to 

a partition, but not being used
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Memory Management: 

Process Termination

 Four neighbor combinations for the termination of 

process X
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How Bad Is Fragmentation?

 Statistical arguments - Random sizes

 First-fit

 Given N allocated blocks

 0.5N blocks will be lost because of 

fragmentation

 Known as 50% RULE
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Compaction

 Reduce external fragmentation by 

compaction

 Shuffle memory contents to place all free 

memory together in one large block

 Compaction is possible only if relocation 

is dynamic, and is done at execution time
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Solve Fragmentation w. 

Compaction
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Storage Management 

Problems

 Fixed partitions suffer from

 Internal fragmentation

 Variable partitions suffer from

 External fragmentation

 Compaction suffers from 

 Overhead

Copyright ©: University of Illinois CS 241 Staff 33



Question

 What if there are more processes than 

what could fit into the memory?

 Swapping

 Memory allocation changes as 

 Processes come into memory

 Processes leave memory

 Swapped to disk

 Complete execution
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Swapping
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Swapping
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Swapping
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Swapping
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Swapping

Copyright ©: University of Illinois CS 241 Staff 39

Monitor

Disk

User 2

User 2

User

Partition
User 1



Swapping
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Swapping
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Limitations of Swapping

 Problems with swapping

 Process must fit into physical memory 

(impossible to run larger processes)

 Memory becomes fragmented

 External fragmentation

 Lots of small free areas

 Compaction 

 Reassemble larger free areas

 Processes are either in memory or on disk: half 

and half doesn’t do any good
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