
Copyright ©: University of Illinois CS 241 Staff 1

Memory

Memory

Learning Objectives

 Overlays & Fixed Partitions

 Internal Fragmentation

 Why separate queues are inefficient

 Virtual Addresses

 Relocation using Base Register

 Dynamic contiguous allocation

 Bitmaps versus linked lists

 Allocation Schemes (Best,First, Worst, Next)

Copyright ©: University of Illinois CS 241 Staff 2

Memory Management

 The ideal world has memory that is

 Very large

 Very fast

 Very cheap

 Non-volatile (doesn’t go away when power is turned off)

 The real world has memory that is

 Very large

 Very fast

 Affordable!

 Pick any two…

 Memory management goal

 Make the real world look as much like the ideal world as possible

Copyright ©: University of Illinois CS 241 Staff 3

Memory Management

 Goal

 Layout the programs in memory as

needed

 Potential issues

 Utilization

 Protection

 Flexibility

Copyright ©: University of Illinois CS 241 Staff 4

Space Constraints

 Problem

 Not enough memory to keep all

application data

 One solution

 Overlays: keep only important

instructions and data in memory

Copyright ©: University of Illinois CS 241 Staff 5

Overlays

Copyright ©: University of Illinois CS 241 Staff 6

Overlay Manager

Overlay Area

Main Program

Overlay 1

Overlay 2

Overlay 3

Secondary Storage

0K

5k

7k

12k

Overlays

Copyright ©: University of Illinois CS 241 Staff 7

Overlay Manager

Overlay Area

Main Program

Overlay 1

Overlay 2

Overlay 3

Secondary Storage

0K

5k

7k

12k

Overlay 1Overlay 2Overlay 3

Mulitple Fixed Partitions

Copyright ©: University of Illinois CS 241 Staff 8

Free Space

0k

4k

16k

64k

128k

Fixed boundaries

between memory

allocations

In use
Divide

memory into

n (possible

unequal)

partitions.

Multiple Fixed Partitions

Copyright ©: University of Illinois CS 241 Staff 9

Free Space

Second memory

allocation

First memory

allocation

0k

4k

16k

64k

128k

Internal

fragmentation

(cannot be

reallocated)

In use

Third memory

allocation

Fourth memory

allocation?

Fixed Partition

Implementation

 Separate input queue

for each partition

 Put incoming jobs into

separate partition

queues

 Requires sorting the

incoming jobs and

putting them into

separate queues

 Inefficient utilization of

memory

 Small jobs still wait

Copyright ©: University of Illinois CS 241 Staff 10

OS

Partition 1

Partition 2

Partition 3

Partition 4

0

100K

500K

600K

700K

900K

Fixed Partition

Implementation

 Solution: One single

input queue for all

partitions.

 Allocate a partition

where the job fits

and use…

 Best Fit

 Worst Fit

 First Fit

Copyright ©: University of Illinois CS 241 Staff 11

OS

Partition 1

Partition 2

Partition 3

Partition 4

0

100K

500K

600K

700K

900K

Virtual addresses

 "Any programming problem can be solved

by adding a level of indirection.“

 Logical address

 Address generated by the CPU

 Virtual address

 Physical address

 Address seen by the memory unit

Copyright ©: University of Illinois CS 241 Staff 12

Virtual addresses

 Different jobs will run at different addresses

 When a program is linked, the linker must know

at what address the program will begin in

memory

 Program never sees physical address

 Correct starting address when a program starts

in memory

Copyright ©: University of Illinois CS 241 Staff 13

Base Register

 Logical or "Virtual"

addresses

 Logical address

space

 Range: 0 to max

 How

 Memory-management unit (MMU)

 Map virtual to physical addresses

 Relocation register

 Mapping requires hardware (MMU) with the base register

 Physical addresses

 Physical address space

 Range: R+0 to R+max

for base value R

Copyright ©: University of Illinois CS 241 Staff 14

MMU

Relocation Register

Copyright ©: University of Illinois CS 241 Staff 15

Memory

Base Register

CPU

Instruction

Address

+

BA

MA MA+BA

Physical

Address
Logical

Address

Base Address

Base: start of the process’s memory partition

MMU

Relocation Register

Copyright ©: University of Illinois CS 241 Staff 16

Memory

Base Register

CPU

Instruction

Address

+

14000

346 14346

Physical

Address
Logical

Address

Base Address

Base: start of the process’s memory partition

Protection

 Problem

 How to prevent a malicious process from

writing or jumping into other user's or OS

partitions

 Solution

 Base bounds registers

Copyright ©: University of Illinois CS 241 Staff 17

Base Bounds Registers

Copyright ©: University of Illinois CS 241 Staff 18

Memory

Bounds Register Base Register

CPU

Address
< +

Memory

Address

MA

Logical

Address LA

Physical

Address

PA

Fault

Base Address

Limit Address

MA+BA

Base

Address

BA

Base: start of the process’s memory partition
Limit: length of the process’s memory partition

Memory Management

 Goal

 Keep track of free / allocated memory regions

 Mechanisms

 Bitmaps

 One bit in map corresponds to a fixed-size region of

memory

 Linked lists

 Each entry in the list corresponds to a contiguous

region of memory

Copyright ©: University of Illinois CS 241 Staff 19

Bit Maps and Linked Lists

 Part of memory with 5 processes, 3 holes

 Tick marks show allocation units

 Green regions are free

Copyright ©: University of Illinois CS 241 Staff 20

A B C D E
8 16 24

Bit Maps and Linked Lists

 Part of memory with 5 processes, 3 holes

 Tick marks show allocation units

 Green regions are free

Copyright ©: University of Illinois CS 241 Staff 21

A B C D E

1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 0 0 0

8 16 24

Bit Maps and Linked Lists

 Part of memory with 5 processes, 3 holes

 Tick marks show allocation units

 Green regions are free

Copyright ©: University of Illinois CS 241 Staff 22

A B C D E

1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 0 0 0

8 16 24

P 0 5 H 5 3 P 8 6 P 14 4

H 18 2 P 20 6 P 26 3 H 29 3 X

Hole Starts

at 18

Length

2

Process

Partition Allocation schemes

 Bitmap vs. link list

 Which one occupies more space?

 Depends on the individual memory allocation scenario

 In most cases, bitmap usually occupies more space

 Which one is faster to reclaim freed space?

 On average, bitmap is faster because it just needs to

set the corresponding bits

 Which one is faster to find a free hole?

 On average, a link list is faster because we can link all

free holes together

Copyright ©: University of Illinois CS 241 Staff 23

Storage Placement Strategies

 First fit

 Use the first available hole whose size is sufficient to meet

the need

 Rationale?

 Best fit

 Use the hole whose size is equal to the need, or if none is

equal, the hole that is larger but closest in size

 Rationale?

 Worst fit

 Use the largest available hole

 Rationale?

Copyright ©: University of Illinois CS 241 Staff 24

Example

 Consider a swapping system in which

memory consists of the following hole sizes

in memory order:

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.

 Which hole is taken for successive segment

requests of:

 12K

 10K

 9K

Copyright ©: University of Illinois CS 241 Staff 25

Example

 Consider a swapping system in which

memory consists of the following hole sizes

in memory order:

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.

 Which hole is taken for successive segment

requests of:

 12K

 10K

 9K

Copyright ©: University of Illinois CS 241 Staff 26

First fit:

20K, 10K,

18K.

Best fit:

12K, 10K,

9K.

Worst fit:

20K, 18K,

and 15K.

Storage Placement Strategies

 Best fit

 Produces the smallest leftover hole

 Creates small holes that cannot be used

 Worst Fit

 Produces the largest leftover hole

 Difficult to run large programs

 First Fit

 Creates average size holes

 First-fit and best-fit better than worst-fit in terms of

speed and storage utilization

Copyright ©: University of Illinois CS 241 Staff 27

Fragmentation

 External Fragmentation

 Memory space exists to satisfy a request,

but it is not contiguous

 Internal Fragmentation

 Allocated memory may be slightly larger

than requested memory

 The size difference is memory internal to

a partition, but not being used

Copyright ©: University of Illinois CS 241 Staff 28

Memory Management:

Process Termination

 Four neighbor combinations for the termination of

process X

Copyright ©: University of Illinois CS 241 Staff 29

A X B

A X

X B

X

A B

A

B

Before X Terminates After X Terminates

becomes

becomes

becomes

becomes

How Bad Is Fragmentation?

 Statistical arguments - Random sizes

 First-fit

 Given N allocated blocks

 0.5N blocks will be lost because of

fragmentation

 Known as 50% RULE

Copyright ©: University of Illinois CS 241 Staff 30

Compaction

 Reduce external fragmentation by

compaction

 Shuffle memory contents to place all free

memory together in one large block

 Compaction is possible only if relocation

is dynamic, and is done at execution time

Copyright ©: University of Illinois CS 241 Staff 31

Solve Fragmentation w.

Compaction

Copyright ©: University of Illinois CS 241 Staff 32

Monitor Job 3 FreeJob 5 Job 6Job 7 Job 85

Monitor Job 3Job 5 Job 6Job 7 Job 86

Monitor Job 3Job 5 Job 6Job 7 Job 87

Monitor Job 3Job 5 Job 6Job 7 Job 88

Monitor Job 3 FreeJob 5 Job 6Job 7 Job 89

Storage Management

Problems

 Fixed partitions suffer from

 Internal fragmentation

 Variable partitions suffer from

 External fragmentation

 Compaction suffers from

 Overhead

Copyright ©: University of Illinois CS 241 Staff 33

Question

 What if there are more processes than

what could fit into the memory?

 Swapping

 Memory allocation changes as

 Processes come into memory

 Processes leave memory

 Swapped to disk

 Complete execution

Copyright ©: University of Illinois CS 241 Staff 34

Swapping

Copyright ©: University of Illinois CS 241 Staff 35

Monitor

Disk

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 36

Monitor

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 37

Monitor

User 1

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 38

Monitor

User 2

User 1

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 39

Monitor

Disk

User 2

User 2

User

Partition
User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 40

Monitor

Disk

User 2

User 2

User

Partition
User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 41

Monitor

Disk

User 1

User 2

User

Partition
User 1

Limitations of Swapping

 Problems with swapping

 Process must fit into physical memory

(impossible to run larger processes)

 Memory becomes fragmented

 External fragmentation

 Lots of small free areas

 Compaction

 Reassemble larger free areas

 Processes are either in memory or on disk: half

and half doesn’t do any good

Copyright ©: University of Illinois CS 241 Staff 42

