Copyright ©: University of Illinois CS 241 Staff

Memory
Learning Objectives

Overlays & Fixed Partitions
o Internal Fragmentation
o Why separate queues are inefficient

Virtual Addresses
o Relocation using Base Register

Dynamic contiguous allocation
o Bitmaps versus linked lists
o Allocation Schemes (Best,First, Worst, Next)

Copyright ©: University of Illinois CS 241 Staff

Memory Management

The ideal world has memory that is

o Very large

o Very fast

o Very cheap

o Non-volatile (doesn’'t go away when power is turned off)
The real world has memory that is

o Very large

o Very fast

o Affordable!

— Pick any two...

Memory management goal

o Make the real world look as much like the ideal world as possible

Copyright ©: University of Illinois CS 241 Staff 3]

[Memory Management

Goal

o Layout the programs in memory as
needed

Potential issues
o Utilization
o Protection
o Flexibility

Copyright ©: University of Illinois CS 241 Staff

[Space Constraints

Problem

o Not enough memory to keep all
application data

One solution

o Overlays: keep only important
Instructions and data in memory

Copyright ©: University of Illinois CS 241 Staff

[Overlays]

OK

5k
7k

Overlay 3

12k

Copyright ©: University of lllinois CS 241 Staff

Overlays

OK

5k
7k

Overlay 3 Overlay 3

12k

Copyright ©: University of lllinois CS 241 Staff 7

Mulitple Fixed Partitions

Divide
memory into
n (possible
unequal)
partitions.

Ok In use

- Free Space
4Kk

Fixed boundaries
between memory
16k allocations

128k

Copyright ©: University of lllinois CS 241 Staff

Multiple Fixed Partitions

Ok In use
First memory
allocation Ak - Free SpaCe

Internal

Second memory _
fragmentation

allocation

16Kk

Third memory

allocation (cannot be

reallocated)
Fourt mory

allogation

128k

Copyright ©: University of lllinois CS 241 Staff 9 ﬂ

Fixed Partition
Implementation

Separate input queue
for each partition

: . : 900K
o Put mcommg_pbs Into | Partition 4
separate partition
N _ e 700K
gueues — — Partition 3
Requires sorting the Partition 2 600K
incoming jobs and - 500K
putting them into — Partition 1
s.ep?arate qu-eues- 100K
o Inefficient utilization of 0S)
memory

Small jobs still wait

Copyright ©: University of Illinois CS 241 Staff

Fixed Partition
Implementation

Solution: One single
Input queue for all
partitions.

@)

Allocate a partition
where the job fits S S GG
and use...

Best Fit
Worst Fit
First Fit

Copyright ©: University of Illinois CS 241 Staff

Partition 4

Partition 3

Partition 2

Partition 1

oS

900K

700K
600K
500K

100K

Virtual addresses

"Any programming problem can be solved
by adding a level of indirection.”

Logical address
o Address generated by the CPU
o Virtual address

Physical address
o Address seen by the memory unit

Copyright ©: University of Illinois CS 241 Staff

Virtual addresses

Different jobs will run at different addresses

O

When a program is linked, the linker must know
at what address the program will begin in
memory

Program never sees physical address

Correct starting address when a program starts
INn memory

Copyright ©: University of Illinois CS 241 Staff

Base Register

Logical or "Virtual" Physical addresses

addresses o Physical address space

o Logical address o Range: R+0 to R+max
space for base value R

o Range: 0 to max

How
o Memory-management unit (MMU)
Map virtual to physical addresses

o Relocation register
Mapping requires hardware (MMU) with the base register

Copyright ©: University of Illinois CS 241 Staff 14]

Relocation Register

Base Register Base Address
BA
— Logical Physical
: Address
Instruction Memory
Address MA+BA
MMU
Base: start of the process’s memory partition

Copyright ©: University of lllinois CS 241 Staff

Relocation Register

Base Register Base Address
14000
Logical Physical
CPU : Address M
Instruction =7z ST
Address 14346
MMU
Base: start of the process’s memory partition

Copyright ©: University of lllinois CS 241 Staff

[Protection]

= Problem

o How to prevent a malicious process from
writing or jJumping into other user's or OS
partitions

= Solution
o Base bounds registers

Copyright ©: University of Illinois CS 241 Staff

Base Bounds Registers

Bounds Register || Base Register

Logical Base
Address LA Address
BA
CPU
Address

Physical

emory
Address Addresz
MA

Fault

Base: start of the process’s memory partition
Limit: length of the process’s memory partition

Copyright ©: University of Illinois CS 241 Staff

Base Address

MA+BA
Memory

Limit Address

Memory Management

Goal
o Keep track of free / allocated memory regions

Mechanisms

o Bitmaps

One bit in map corresponds to a fixed-size region of
memory

o Linked lists

Each entry in the list corresponds to a contiguous
region of memory

Copyright ©: University of Illinois CS 241 Staff

Bit Maps and Linked Lists

8 16 24

1 IAI [Ll B C D IEI

Part of memory with 5 processes, 3 holes
o Tick marks show allocation units
o Green regions are free

Copyright ©: University of Illinois CS 241 Staff

Bit Maps and Linked Lists

8 16 24
A B |.C D | E

11/
| 11111000 |
11111111
‘11001111\
‘11111000\

Part of memory with 5 processes, 3 holes
o Tick marks show allocation units
o Green regions are free

Copyright ©: University of Illinois CS 241 Staff

Bit Maps and Linked Lists

8 16 24

Ll

| 11111000 | P|O|5 > H|5|3 >P|8|6 > P 14| 4 [—
‘11111111\ >
11001111
‘11111000\ H

Part of memory with 5 processes, 3 holes
o Tick marks show allocation units
o Green regions are free

18] 2 P |20| 6 > P |26] 3 > H 29| 3| X

PN 1
Hole Starts Length Process
at 18 2

Copyright ©: University of Illinois CS 241 Staff

Partition Allocation schemes

Bitmap vs. link list

o Which one occupies more space”?
Depends on the individual memory allocation scenario
In most cases, bitmap usually occupies more space

o Which one is faster to reclaim freed space?

On average, bitmap is faster because it just needs to
set the corresponding bits

o Which one is faster to find a free hole?

On average, a link list is faster because we can link all
free holes together

Copyright ©: University of Illinois CS 241 Staff 23]

Storage Placement Strategies

First fit

o Use the first available hole whose size is sufficient to meet
the need

o Rationale?

Best fit

o Use the hole whose size is equal to the need, or if none is
equal, the hole that is larger but closest in size

o Rationale?

Worst fit
o Use the largest available hole
o Rationale?

Copyright ©: University of Illinois CS 241 Staff

Example

Consider a swapping system in which
memory consists of the following hole sizes
In memory order:

o 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.

o Which hole is taken for successive segment
requests of:
12K
10K
9K

Copyright ©: University of Illinois CS 241 Staff

Example

= Consider a swapping system in which
memory consists of the following hole sizes
In memory order:

o 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.

o Which hole is taken for successive segment
requests of:

m 12K

= 10K First fit: Best fit: Worst fit:

20K, 10K, | 12K, 10K, | 20K, 18K,
= 3K 18K. oK. and 15K.

Copyright ©: University of Illinois CS 241 Staff

Storage Placement Strategies

Best fit
o Produces the smallest leftover hole
o Creates small holes that cannot be used

Worst Fit
o Produces the largest leftover hole
o Difficult to run large programs

First Fit
o Creates average size holes

First-fit and best-fit better than worst-fit in terms of
speed and storage utilization

Copyright ©: University of Illinois CS 241 Staff 27]

[Fragmentation

External Fragmentation

o Memory space exists to satisfy a request,
but It IS not contiguous

Internal Fragmentation

o Allocated memory may be slightly larger
than requested memory

o The size difference is memory internal to
a partition, but not being used

Copyright ©: University of Illinois CS 241 Staff 28]

Memory Management:
Process Termination

Before X Terminates After X Terminates
A X B becomes A B
A X becomes A
X B becomes B
X becomes

Four neighbor combinations for the termination of
process X

Copyright ©: University of Illinois CS 241 Staff

[How Bad Is Fragmentation?

Statistical arguments - Random sizes
First-fit
o Given N allocated blocks

o 0.5%N blocks will be lost because of
fragmentation

Known as 50% RULE

Copyright ©: University of Illinois CS 241 Staff

[Compaction

Reduce external fragmentation by
compaction

o Shuffle memory contents to place all free
memory together in one large block

o Compaction is possible only if relocation
IS dynamic, and Is done at execution time

Copyright ©: University of Illinois CS 241 Staff

Solve Fragmentation w.

Compaction
Monitor |Job 7| | Job 5 Job 3 Job 8 Job 6
Monitor |Job 7| Job 5 Job 3 Job 8 Job 6
Monitor |Job 7| Job 5 | Job 3 Job 8 Job 6
Monitor [Job 7| Job 5 | Job 3 Job 8 / Job 6

Monitor |Job 7| Job 5 | Job 3 Job 8 Job 6 Free

Copyright ©: University of Illinois CS 241 Staff

Storage Management
[Problems

Fixed partitions suffer from
o Internal fragmentation

Variable partitions suffer from
o External fragmentation

Compaction suffers from
o Overhead

Copyright ©: University of Illinois CS 241 Staff

[Question

What if there are more processes than
what could fit into the memory?

Swapping
Memory allocation changes as

o Processes come into memory

o Processes leave memory
Swapped to disk
Complete execution

Copyright ©: University of Illinois CS 241 Staff

[Swapping

Monitor

User
Partition

Copyright ©: University of Illinois CS 241 Staff

Swapping

Monitor
User \\\\\\\~__"//////

Partition

Copyright ©: University of Illinois CS 241 Staff

| Swapping]

Monitor

User
Partition

Copyright ©: University of Illinois CS 241 Staff

Swapping

Monitor

User
Partition

Copyright ©: University of Illinois CS 241 Staff

Swapping

Monitor

User
Partition

Copyright ©: University of Illinois CS 241 Staff

Swapping

Monitor

User
Partition

Copyright ©: University of Illinois CS 241 Staff

Swapping

Monitor

User
Partition

Copyright ©: University of Illinois CS 241 Staff

Limitations of Swapping

Problems with swapping

o Process must fit into physical memory
(impossible to run larger processes)

o Memory becomes fragmented

External fragmentation
O Lots of small free areas

Compaction
O Reassemble larger free areas
o Processes are either in memory or on disk: half
and half doesn’t do any good

Copyright ©: University of Illinois CS 241 Staff 42]

