
Copyright ©: University of Illinois CS 241 Staff 1

Memory

Memory

Learning Objectives

 Overlays & Fixed Partitions

 Internal Fragmentation

 Why separate queues are inefficient

 Virtual Addresses

 Relocation using Base Register

 Dynamic contiguous allocation

 Bitmaps versus linked lists

 Allocation Schemes (Best,First, Worst, Next)

Copyright ©: University of Illinois CS 241 Staff 2

Memory Management

 The ideal world has memory that is

 Very large

 Very fast

 Very cheap

 Non-volatile (doesn’t go away when power is turned off)

 The real world has memory that is

 Very large

 Very fast

 Affordable!

 Pick any two…

 Memory management goal

 Make the real world look as much like the ideal world as possible

Copyright ©: University of Illinois CS 241 Staff 3

Memory Management

 Goal

 Layout the programs in memory as

needed

 Potential issues

 Utilization

 Protection

 Flexibility

Copyright ©: University of Illinois CS 241 Staff 4

Space Constraints

 Problem

 Not enough memory to keep all

application data

 One solution

 Overlays: keep only important

instructions and data in memory

Copyright ©: University of Illinois CS 241 Staff 5

Overlays

Copyright ©: University of Illinois CS 241 Staff 6

Overlay Manager

Overlay Area

Main Program

Overlay 1

Overlay 2

Overlay 3

Secondary Storage

0K

5k

7k

12k

Overlays

Copyright ©: University of Illinois CS 241 Staff 7

Overlay Manager

Overlay Area

Main Program

Overlay 1

Overlay 2

Overlay 3

Secondary Storage

0K

5k

7k

12k

Overlay 1Overlay 2Overlay 3

Mulitple Fixed Partitions

Copyright ©: University of Illinois CS 241 Staff 8

Free Space

0k

4k

16k

64k

128k

Fixed boundaries

between memory

allocations

In use
Divide

memory into

n (possible

unequal)

partitions.

Multiple Fixed Partitions

Copyright ©: University of Illinois CS 241 Staff 9

Free Space

Second memory

allocation

First memory

allocation

0k

4k

16k

64k

128k

Internal

fragmentation

(cannot be

reallocated)

In use

Third memory

allocation

Fourth memory

allocation?

Fixed Partition

Implementation

 Separate input queue

for each partition

 Put incoming jobs into

separate partition

queues

 Requires sorting the

incoming jobs and

putting them into

separate queues

 Inefficient utilization of

memory

 Small jobs still wait

Copyright ©: University of Illinois CS 241 Staff 10

OS

Partition 1

Partition 2

Partition 3

Partition 4

0

100K

500K

600K

700K

900K

Fixed Partition

Implementation

 Solution: One single

input queue for all

partitions.

 Allocate a partition

where the job fits

and use…

 Best Fit

 Worst Fit

 First Fit

Copyright ©: University of Illinois CS 241 Staff 11

OS

Partition 1

Partition 2

Partition 3

Partition 4

0

100K

500K

600K

700K

900K

Virtual addresses

 "Any programming problem can be solved

by adding a level of indirection.“

 Logical address

 Address generated by the CPU

 Virtual address

 Physical address

 Address seen by the memory unit

Copyright ©: University of Illinois CS 241 Staff 12

Virtual addresses

 Different jobs will run at different addresses

 When a program is linked, the linker must know

at what address the program will begin in

memory

 Program never sees physical address

 Correct starting address when a program starts

in memory

Copyright ©: University of Illinois CS 241 Staff 13

Base Register

 Logical or "Virtual"

addresses

 Logical address

space

 Range: 0 to max

 How

 Memory-management unit (MMU)

 Map virtual to physical addresses

 Relocation register

 Mapping requires hardware (MMU) with the base register

 Physical addresses

 Physical address space

 Range: R+0 to R+max

for base value R

Copyright ©: University of Illinois CS 241 Staff 14

MMU

Relocation Register

Copyright ©: University of Illinois CS 241 Staff 15

Memory

Base Register

CPU

Instruction

Address

+

BA

MA MA+BA

Physical

Address
Logical

Address

Base Address

Base: start of the process’s memory partition

MMU

Relocation Register

Copyright ©: University of Illinois CS 241 Staff 16

Memory

Base Register

CPU

Instruction

Address

+

14000

346 14346

Physical

Address
Logical

Address

Base Address

Base: start of the process’s memory partition

Protection

 Problem

 How to prevent a malicious process from

writing or jumping into other user's or OS

partitions

 Solution

 Base bounds registers

Copyright ©: University of Illinois CS 241 Staff 17

Base Bounds Registers

Copyright ©: University of Illinois CS 241 Staff 18

Memory

Bounds Register Base Register

CPU

Address
< +

Memory

Address

MA

Logical

Address LA

Physical

Address

PA

Fault

Base Address

Limit Address

MA+BA

Base

Address

BA

Base: start of the process’s memory partition
Limit: length of the process’s memory partition

Memory Management

 Goal

 Keep track of free / allocated memory regions

 Mechanisms

 Bitmaps

 One bit in map corresponds to a fixed-size region of

memory

 Linked lists

 Each entry in the list corresponds to a contiguous

region of memory

Copyright ©: University of Illinois CS 241 Staff 19

Bit Maps and Linked Lists

 Part of memory with 5 processes, 3 holes

 Tick marks show allocation units

 Green regions are free

Copyright ©: University of Illinois CS 241 Staff 20

A B C D E 
8 16 24

Bit Maps and Linked Lists

 Part of memory with 5 processes, 3 holes

 Tick marks show allocation units

 Green regions are free

Copyright ©: University of Illinois CS 241 Staff 21

A B C D E 


1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 0 0 0



8 16 24

Bit Maps and Linked Lists

 Part of memory with 5 processes, 3 holes

 Tick marks show allocation units

 Green regions are free

Copyright ©: University of Illinois CS 241 Staff 22

A B C D E 


1 1 1 1 1 0 0 0

1 1 1 1 1 1 1 1

1 1 0 0 1 1 1 1

1 1 1 1 1 0 0 0



8 16 24

P 0 5 H 5 3 P 8 6 P 14 4

H 18 2 P 20 6 P 26 3 H 29 3 X

Hole Starts

at 18

Length

2

Process

Partition Allocation schemes

 Bitmap vs. link list

 Which one occupies more space?

 Depends on the individual memory allocation scenario

 In most cases, bitmap usually occupies more space

 Which one is faster to reclaim freed space?

 On average, bitmap is faster because it just needs to

set the corresponding bits

 Which one is faster to find a free hole?

 On average, a link list is faster because we can link all

free holes together

Copyright ©: University of Illinois CS 241 Staff 23

Storage Placement Strategies

 First fit

 Use the first available hole whose size is sufficient to meet

the need

 Rationale?

 Best fit

 Use the hole whose size is equal to the need, or if none is

equal, the hole that is larger but closest in size

 Rationale?

 Worst fit

 Use the largest available hole

 Rationale?

Copyright ©: University of Illinois CS 241 Staff 24

Example

 Consider a swapping system in which

memory consists of the following hole sizes

in memory order:

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.

 Which hole is taken for successive segment

requests of:

 12K

 10K

 9K

Copyright ©: University of Illinois CS 241 Staff 25

Example

 Consider a swapping system in which

memory consists of the following hole sizes

in memory order:

 10K, 4K, 20K, 18K, 7K, 9K, 12K, and 15K.

 Which hole is taken for successive segment

requests of:

 12K

 10K

 9K

Copyright ©: University of Illinois CS 241 Staff 26

First fit:

20K, 10K,

18K.

Best fit:

12K, 10K,

9K.

Worst fit:

20K, 18K,

and 15K.

Storage Placement Strategies

 Best fit

 Produces the smallest leftover hole

 Creates small holes that cannot be used

 Worst Fit

 Produces the largest leftover hole

 Difficult to run large programs

 First Fit

 Creates average size holes

 First-fit and best-fit better than worst-fit in terms of

speed and storage utilization

Copyright ©: University of Illinois CS 241 Staff 27

Fragmentation

 External Fragmentation

 Memory space exists to satisfy a request,

but it is not contiguous

 Internal Fragmentation

 Allocated memory may be slightly larger

than requested memory

 The size difference is memory internal to

a partition, but not being used

Copyright ©: University of Illinois CS 241 Staff 28

Memory Management:

Process Termination

 Four neighbor combinations for the termination of

process X

Copyright ©: University of Illinois CS 241 Staff 29

A X B

A X

X B

X

A B

A

B

Before X Terminates After X Terminates

becomes

becomes

becomes

becomes

How Bad Is Fragmentation?

 Statistical arguments - Random sizes

 First-fit

 Given N allocated blocks

 0.5N blocks will be lost because of

fragmentation

 Known as 50% RULE

Copyright ©: University of Illinois CS 241 Staff 30

Compaction

 Reduce external fragmentation by

compaction

 Shuffle memory contents to place all free

memory together in one large block

 Compaction is possible only if relocation

is dynamic, and is done at execution time

Copyright ©: University of Illinois CS 241 Staff 31

Solve Fragmentation w.

Compaction

Copyright ©: University of Illinois CS 241 Staff 32

Monitor Job 3 FreeJob 5 Job 6Job 7 Job 85

Monitor Job 3Job 5 Job 6Job 7 Job 86

Monitor Job 3Job 5 Job 6Job 7 Job 87

Monitor Job 3Job 5 Job 6Job 7 Job 88

Monitor Job 3 FreeJob 5 Job 6Job 7 Job 89

Storage Management

Problems

 Fixed partitions suffer from

 Internal fragmentation

 Variable partitions suffer from

 External fragmentation

 Compaction suffers from

 Overhead

Copyright ©: University of Illinois CS 241 Staff 33

Question

 What if there are more processes than

what could fit into the memory?

 Swapping

 Memory allocation changes as

 Processes come into memory

 Processes leave memory

 Swapped to disk

 Complete execution

Copyright ©: University of Illinois CS 241 Staff 34

Swapping

Copyright ©: University of Illinois CS 241 Staff 35

Monitor

Disk

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 36

Monitor

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 37

Monitor

User 1

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 38

Monitor

User 2

User 1

Disk

User 1

User

Partition

Swapping

Copyright ©: University of Illinois CS 241 Staff 39

Monitor

Disk

User 2

User 2

User

Partition
User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 40

Monitor

Disk

User 2

User 2

User

Partition
User 1

Swapping

Copyright ©: University of Illinois CS 241 Staff 41

Monitor

Disk

User 1

User 2

User

Partition
User 1

Limitations of Swapping

 Problems with swapping

 Process must fit into physical memory

(impossible to run larger processes)

 Memory becomes fragmented

 External fragmentation

 Lots of small free areas

 Compaction

 Reassemble larger free areas

 Processes are either in memory or on disk: half

and half doesn’t do any good

Copyright ©: University of Illinois CS 241 Staff 42

