More Network Programming

CS 241 Copyright ©: University of lllinois CS 241 Staff

More Network Programming

Useful API’s

o Select/poll and advanced sockets tidbits

HTTP push server
o Request framing and server push concepts
o Demo

HTTP push server code

o Components

o Flow charts

o Code walk-through (code is online)

CS 241 Copyright ©: University of lllinois CS 241 Staff

More Network Programming

Useful Application Programming Interfaces
o Topics

More advanced sockets

Unix file functionality

Multithreaded programming (Posix Threads)
o Specific APIs

select/poll
advanced sockets

CS 241 Copyright ©: University of lllinois CS 241 Staff

A UDP Server

= How can a UDP
o " Server server service
Port 3000 Port 2000 multiple ports
N simultaneously?
UDP
IP
]
Ethernet Adapter

CS 241 Copyright ©: University of lllinois CS 241 Staff

UDP Server: Servicing Two
Ports

int sl; /* socket descriptor 1 */

int s2; /* socket descriptor 2 */

/* 1) create socket sl */

/* 2) create socket s2 */ What problems does

/* 3) bind sl to port 2000 */ : A
/* 4) bind s2 to port 3000 */ this code have?

while (1) {
recvfrom(sl, buf, sizeof(buf), ...);
/* process buf */
recvfrom(s2, buf, sizeof(buf), ...);
/* process buf */

CS 241 Copyright ©: University of lllinois CS 241 Staff

Select and Poll

Building timeouts with select/poll

o Similar functions

Parameters

O Set of file descriptors

o Set of events for each descriptor
o Timeout length

Return value

o Set of file descriptors

O Events for each descriptor

Notes
o Select is somewhat simpler
o Poll supports more events

CS 241 Copyright ©: University of lllinois CS 241 Staff

Select and Poll: Prototypes

n Select

o Wait for readable/writable file descriptors

#include <sys/time.h>

int select (int num fds, fd set* read set, fd set*
write set, fd set* except set, struct timeval¥*
timeout) ;

= Poll

o Poll file descriptors for events
#include <poll.h>

int poll (struct pollfd* pfds, nfds t nfds, int
timeout) ;

CS 241 Copyright ©: University of lllinois CS 241 Staff

Select

int select (int num fds, fd set* read set, fd set*

CS 241

write set, fd set* except set, struct timeval*
timeout) ;

Wait for readable/writable file descriptors.
Return:
o Number of descriptors ready
o -1on error, sets errno
Parameters:
o num_ fds:
= number of file descriptors to check, numbered from 0
0 read set, write set, except_ set:
= Sets (bit vectors) of file descriptors to check for the specific condition
o) timeout!:
= Time to wait for a descriptor to become ready

Copyright ©: University of lllinois CS 241 Staff

File Descriptor Sets

= Bit vectors
Often 1024 bits, only first num £ds checked

Macros to create and check sets

CS 241

O

O

fds set myset;

void FD ZERO (&myset); /*
void FD _SET (n, &myset); /*
void FD CLEAR (n, &myset); /*
int FD_ISSET (n, &myset); /*

Copyright ©: University of lllinois CS 241 Staff

clear all bits */
set bits n to 1 */
clear bit n */

is bit n set? */

File Descriptor Sets

Three conditions to check for
o Readable
Data available for reading

o Writable
Buffer space available for writing

o Exception
Out-of-band data available (TCP)

CS 241 Copyright ©: University of lllinois CS 241 Staff

Timeout

Structure

Number of seconds since
midnight, January 1, 1970 GMT

struct timeval ({
long tv_sec; /* seconds */
long tv _usec; /* microseconds */
};
unix will have its own "Y2K" problem one
second after 10:14:07pm, Monday January 18,

2038 (will appear to be 3:45:52pm, Friday
December 13, 1901)

CS 241 Copyright ©: University of lllinois CS 241 Staff

Select

CS 241

Which file descriptors

High-resolution sleep function are set and what
o All descriptor sets NULL should the timeout
o Positive timeout value be?

Wait until descriptor(s) become ready

o Atleast one descriptor in set

O timeout NULL

Wait until descriptor(s) become ready or timeout occurs
o Atleast one descriptor in set

o Positive timeout

Check descriptors immediately (poll)

o At least one descriptor in set

o 0O timeout

Copyright ©: University of lllinois CS 241 Staff

Select: Example

fd set my read;
FD ZERO (&my read);
FD SET(0, &my read);

if (select(l, &my read, NULL, NULL) == 1) ({

CS 241

ASSERT (FD ISSET (0, &my read);
/* data ready on stdin */

What went wrong:
after select indicates
data available on a
connection, read
returns no data?

Copyright ©: University of lllinois CS 241 Staff

Select: Timeout Example

int main(void) {

struct timeval tv; Wait 2.5 seconds for
fd_set readfds; something to appear
tv.tv_sec = 2; on standard input

tv.tv_usec = 500000;

FD_ZERO (&readfds) ;
FD_SET (STDIN, &readfds);

// don't care about writefds and exceptfds:
select(l, &readfds, NULL, NULL, &tv);

if (FD_ISSET (STDIN, &readfds))
printf ("A key was pressed!'\n");
else
printf ("Timed out.\n");

return O;

CS 241 Copyright ©: University of lllinois CS 241 Staff

Poll

#include <poll.h>

int poll (struct pollfd* pfds, nfds t nfds, int
timeout) ;

= Poll file descriptors for events.

= Return:

o Number of descriptors with events
o -1on error, sets errno

o Parameters:

o pfds:
= An array of descriptor structures. File descriptors, desired events and returned
events
o nfds:

= Length of the p£ds array
O timeout:
n Timeout value in milliseconds

CS 241 Copyright ©: University of lllinois CS 241 Staff

Descriptors

Structure

struct pollfd {

int £d; /* file descriptor */
short events; /* queried event bit mask */
short revents; /* returned event mask */

Note:
o Any structure with £d < 0 Is skipped

CS 241 Copyright ©: University of lllinois CS 241 Staff

Event Flags

POLLIN:

o data available for reading

POLLOUT.

o Buffer space available for writing
POLLERR:

o Descriptor has error to report
POLLHUP:

o Descriptor hung up (connection closed)
POLLVAL:

o Descriptor invalid

CS 241 Copyright ©: University of lllinois CS 241 Staff

Poll

High-resolution sleep function

o Onfds

o Positive timeout

Wait until descriptor(s) become ready
o nfds>0

0 timeout INFTIMoOr -1

Wait until descriptor(s) become ready or timeout occurs
o nfds>0

o Positive timeout

Check descriptors immediately (poll)
o nfds>0

o 0O timeout

CS 241 Copyright ©: University of lllinois CS 241 Staff

Poll: Example

struct pollfd my pfds[1l];

my pfds[0].fd = O;
my pfds[0] .events

POLLIN;

if (poll(&my pfds, 1, INFTIM) == 1) ({
ASSERT (my pfds[0].revents & POLLIN) ;
/* data ready on stdin */

CS 241 Copyright ©: University of lllinois CS 241 Staff

Advanced Sockets: signal

signal (SIGPIPE, SIG IGN) ;

O

O

CS 241

Call at start of main in server

Allows you to ignore broken pipe signals which
are generated when you write to a socket that
has already been closed on the other side

Default handler exits (terminates process)

Copyright ©: University of lllinois CS 241 Staff

Advanced Sockets

How come | get "address already Iin use
from bind()?

o You have stopped your server, and then re-
started it right away

o The sockets that were used by the first
Incarnation of the server are still active

CS 241 Copyright ©: University of lllinois CS 241 Staff

Advanced Sockets:
setsockopt

int yes = 1;

setsockopt (fd, SOL SOCKET,

SO _REUSEADDR, (cﬁ;r *) &yes, sizeof
(yes));

CS 241

O

O

Call just before bind

Allows bind to succeed despite the existence of
existing connections in the requested TCP port

Connections in limbo (e.g. lost final ACK) will
cause bind to fail

Copyright ©: University of lllinois CS 241 Staff

HTTP Request Framing

= Characteristics

o ASCIl-based (human readable)
Framed by text lines
First line is command
Remaining lines are additional data
Blank line ends request frame

O O O O

CS 241 Copyright ©: University of lllinois CS 241 Staff

HTTP Server Push (Netscape-
Specific)

ldea
o Connection remains open
o Server pushes down new data as needed

o Termination
Any time by server
Stop loading (or reload) by client

Components

o Header indicating multiple parts
o New part replaces old part

o New part sent any time

o Wrappers for each part

CS 241 Copyright ©: University of lllinois CS 241 Staff

HTTP Server Push (Netscape-
Specific)

HTTP/1.0 200 OK
Content-type: multipart/x-mixed-replace;\
boundary=-—never_in_document---

—never_in document—-

the data component
Content-type: text/html

(actual data)
—never in _document-—

CS 241 Copyright ©: University of lllinois CS 241 Staff

Example

= Push server
o Client-server connection remains open
o Server pushes new data

= Use pthreads

= Main thread
o Accepts new client connections
o Spawns child thread for each client

= Child threads
o Parses client requests
o Constructs response
o Checks for file modification
o Pushes file when necessary

CS 241 Copyright ©: University of lllinois CS 241 Staff

Example: Server Thread Flow
Chart

Initialize

Set up server thread

Start — P — -

TCP socket attributes
structure
Spawn a child Create a

thread to < Wait for a | thread

handle new connection specific data

connection structure

]

CS 241 Copyright ©: University of lllinois CS 241 Staff

Example: Client Thread Flow
Chart

Start

\

Wait for 1 second

Push thread

Send file to client

1

\ 4

or until client send

\ 4

cleanup function

request

Got client

CS 241

Success
in send?

request?

Request
valid?

Store file name and
reset send time y

v

Done

Pop and execute thread
cleanup function

A
A

Copyright ©: University of lllinois CS 241 Staff

set up server socket

static int set up server socket (u short port) {

int f£d; /* server socket file descriptor */

int yes = 1; /* used for setting socket options */

struct sockaddr in addr; /* server socket address */
(" /* Create a TCP socket. */ N

if ((fd = socket (PF_INET, SOCK STREAM, 0)) == -1) {

perror ("set up server socket/socket");
return -1;

\J Y,
(" /* Allow port reuse with the bind below. */)
if (setsockopt (fd, SOL SOCKET, SO REUSEADDR,

(char*) &yes, sizeof (yes)) == -1) {
perror ("set up server socket/setsockopt");
return -1;

\J J

CS 241 Copyright ©: University of lllinois CS 241 Staff

set up server socket

/* Set up the address. */
bzero (&addr, sizeof (addr));

addr.sin family = AF_INET; /* Internet address *x/
addr.sin_addr.s_addr = INADDR ANY; /* fill in local IP address */
addr.sin_port = htons (port); /* port specified by caller*/

/r/* Bind the socket to the port. */ N
if (bind (fd, (struct sockaddr*) &addr, sizeof (addr)) == -1) {

perror ("set up server socket/bind");
return -1;

}
\ J

/r/* Listen for incoming connections (socket into passive state). *7\
if (listen (£fd, BACKLOG) == -1) {

perror ("set up server socket/listen");

return -1;

}
- J

/* The server socket is now ready. */
return f£d;

CS 241 Copyright ©: University of lllinois CS 241 Staff

wal t_f or_connections

static void wait for connections (int £d) {

pthread attr t attr; /* initial thread attributes */
thread info_ t* info; /* thread-specific connection information */
int len; /* value-result argument to accept */
pthread t thread id; /* child thread identifier */

/* Signal a bug for invalid descriptors. */
ASSERT (fd > 0);

/* Initialize the POSIX threads attribute structure. */
if (pthread attr init (&attr) != 0) {
fputs ("failed to initialize pthread attributes\n", stderr);
return;
1 S
/r/* The main thread never joins with the children. */)

if (pthread attr_setdetachstate (&attr, PTHREAD CREATE DETACHED)
'=0) {

fputs ("failed to set detached state attribute\n", stderr);
return;

\J J

CS 241 Copyright ©: University of lllinois CS 241 Staff 33]

wal t_f or_connections

/* Use an infinite loop to wait for connections. For each
connection, create a structure with the thread-specific data,
spawn a child thread and pass it the data. The child is

responsible for deallocating the memory before it terminates.
while (1) {

/* Create a thread information structure and initialize

fields that can be filled in before a client contacts
the server. */

if ((info = calloc (1,

sizeof (*info))) == NULL) {
perror ("wait for connections/calloc");
return;

}
info->fname
info—>last_sent =

NULL;
(time_t)0;

CS 241 Copyright ©: University of lllinois CS 241 Staff

then

*/

wal t_f or_connections

/* Wait for a client to contact the server. */
len = sizeof (info->addr);

/if ((info->fd = accept (fd, (struct sockaddr*)&info->addr,)
&len)) == -1) {
perror ("accept");
return;
U y,
//;; Create a thread to handle the client. */ <\\\
if (pthread create (&thread id, &attr,

(void* (*) (void*))client thread, info) != 0) {
fputs ("failed to create thread\n", stderr);

/* The child does not exist, the main thread must clean up. */
close (info->£fd);

free (info);

return;

CS 241 Copyright ©: University of lllinois CS 241 Staff

cl ient_thread

void client thread (thread info_ t* info) {
/* Check argument. */
ASSERT (info != NULL) ;
4)

/* Free the thread info block whenever the thread terminates.
Note that pushing this cleanup function races with external
termination. If external termination wins, the memory is never
released. */

pthread cleanup push ((void (*) (void*))release thread info, info);

> <
/* Loop between waiting for a request and sending a new copy of
the current file of interest. */
while (read client request (info) == 0 &&

N send file to client (info) == 0); p

/* Defer cancellations to avoid re-entering deallocation routine
(release_thread info) in the middle, then pop (and execute) the
deallocation routine.*/

pthread setcanceltype (PTHREAD CANCEL DEFERRED, NULL) ;

\;pthread;pleanup_pop (1) Y,

CS 241 Copyright ©: University of lllinois CS 241 Staff 36]

cl ient_has_data

static int client has_data (int £d) {
fd set read_set;
struct timeval timeout;

/* Check argument. */
ASSERT (fd > 0);

/* Set timeout for select. */
timeout.tv_sec = CHECK_PERIOD;
timeout.tv_usec = 0;

/* Set read mask for select. */
FD_ZERO (&read_set);

FD SET (fd, &read_set);
/>* Call select. Possible return values are {-1, 0, 1}. */
if (select (fd + 1, &read set, NULL, NULL, &timeout) < 1) {

/* We can't check errno in a thread--assume nothing bad has happened. */
return O;

}
- J

/* Select returned 1 file descriptor ready for reading. */
return 1;

CS 241 Copyright ©: University of lllinois CS 241 Staff

