
CS 241 Copyright ©: University of Illinois CS 241 Staff 1

More Network Programming

CS 241 Copyright ©: University of Illinois CS 241 Staff 2

More Network Programming

 Useful API’s
 Select/poll and advanced sockets tidbits

 HTTP push server
 Request framing and server push concepts

 Demo

 HTTP push server code
 Components

 Flow charts

 Code walk-through (code is online)

CS 241 Copyright ©: University of Illinois CS 241 Staff 3

More Network Programming

 Useful Application Programming Interfaces
 Topics

 More advanced sockets

 Unix file functionality

 Multithreaded programming (Posix Threads)

 Specific APIs
 select/poll

 advanced sockets

A UDP Server

 How can a UDP

server service

multiple ports

simultaneously?

CS 241 Copyright ©: University of Illinois CS 241 Staff 4

UDP

IP

Ethernet Adapter

UDP Server

Port 2000Port 3000

UDP Server: Servicing Two

Ports

int s1; /* socket descriptor 1 */

int s2; /* socket descriptor 2 */

/* 1) create socket s1 */

/* 2) create socket s2 */

/* 3) bind s1 to port 2000 */

/* 4) bind s2 to port 3000 */

while(1) {

recvfrom(s1, buf, sizeof(buf), ...);

/* process buf */

recvfrom(s2, buf, sizeof(buf), ...);

/* process buf */

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 5

What problems does

this code have?

CS 241 Copyright ©: University of Illinois CS 241 Staff 6

Select and Poll

 Building timeouts with select/poll
 Similar functions

 Parameters
 Set of file descriptors

 Set of events for each descriptor

 Timeout length

 Return value
 Set of file descriptors

 Events for each descriptor

 Notes
 Select is somewhat simpler

 Poll supports more events

CS 241 Copyright ©: University of Illinois CS 241 Staff 7

Select and Poll: Prototypes

 Select

 Wait for readable/writable file descriptors
#include <sys/time.h>

int select (int num_fds, fd_set* read_set, fd_set*

write_set, fd_set* except_set, struct timeval*

timeout);

 Poll

 Poll file descriptors for events
#include <poll.h>

int poll (struct pollfd* pfds, nfds_t nfds, int

timeout);

CS 241 Copyright ©: University of Illinois CS 241 Staff 8

Select

int select (int num_fds, fd_set* read_set, fd_set*

write_set, fd_set* except_set, struct timeval*

timeout);

 Wait for readable/writable file descriptors.

 Return:

 Number of descriptors ready

 -1 on error, sets errno

 Parameters:
 num_fds:

 number of file descriptors to check, numbered from 0

 read_set, write_set, except_set:

 Sets (bit vectors) of file descriptors to check for the specific condition

 timeout:

 Time to wait for a descriptor to become ready

CS 241 Copyright ©: University of Illinois CS 241 Staff 9

File Descriptor Sets

 Bit vectors

 Often 1024 bits, only first num_fds checked

 Macros to create and check sets

fds_set myset;

void FD_ZERO (&myset); /* clear all bits */

void FD_SET (n, &myset); /* set bits n to 1 */

void FD_CLEAR (n, &myset); /* clear bit n */

int FD_ISSET (n, &myset); /* is bit n set? */

CS 241 Copyright ©: University of Illinois CS 241 Staff 10

File Descriptor Sets

 Three conditions to check for

 Readable

 Data available for reading

 Writable

 Buffer space available for writing

 Exception

 Out-of-band data available (TCP)

CS 241 Copyright ©: University of Illinois CS 241 Staff 11

Timeout

 Structure

struct timeval {

long tv_sec; /* seconds */

long tv_usec; /* microseconds */

};

unix will have its own "Y2K" problem one

second after 10:14:07pm, Monday January 18,

2038 (will appear to be 3:45:52pm, Friday

December 13, 1901)

Number of seconds since

midnight, January 1, 1970 GMT

CS 241 Copyright ©: University of Illinois CS 241 Staff 12

Select

 High-resolution sleep function

 All descriptor sets NULL

 Positive timeout

 Wait until descriptor(s) become ready

 At least one descriptor in set

 timeout NULL

 Wait until descriptor(s) become ready or timeout occurs

 At least one descriptor in set

 Positive timeout

 Check descriptors immediately (poll)

 At least one descriptor in set

 0 timeout

Which file descriptors

are set and what

should the timeout

value be?

CS 241 Copyright ©: University of Illinois CS 241 Staff 13

Select: Example

fd_set my_read;

FD_ZERO(&my_read);

FD_SET(0, &my_read);

if (select(1, &my_read, NULL, NULL) == 1) {

ASSERT(FD_ISSET(0, &my_read);

/* data ready on stdin */ What went wrong:

after select indicates

data available on a

connection, read

returns no data?

Select: Timeout Example

int main(void) {

struct timeval tv;

fd_set readfds;

tv.tv_sec = 2;

tv.tv_usec = 500000;

FD_ZERO(&readfds);

FD_SET(STDIN, &readfds);

// don't care about writefds and exceptfds:

select(1, &readfds, NULL, NULL, &tv);

if (FD_ISSET(STDIN, &readfds))

printf("A key was pressed!\n");

else

printf("Timed out.\n");

return 0;

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 14

Wait 2.5 seconds for

something to appear

on standard input

CS 241 Copyright ©: University of Illinois CS 241 Staff 15

Poll

#include <poll.h>

int poll (struct pollfd* pfds, nfds_t nfds, int

timeout);

 Poll file descriptors for events.

 Return:

 Number of descriptors with events

 -1 on error, sets errno

 Parameters:
 pfds:

 An array of descriptor structures. File descriptors, desired events and returned
events

 nfds:

 Length of the pfds array

 timeout:

 Timeout value in milliseconds

CS 241 Copyright ©: University of Illinois CS 241 Staff 16

Descriptors

 Structure
struct pollfd {

int fd; /* file descriptor */

short events; /* queried event bit mask */

short revents; /* returned event mask */

 Note:

 Any structure with fd < 0 is skipped

CS 241 Copyright ©: University of Illinois CS 241 Staff 17

Event Flags

 POLLIN:

 data available for reading

 POLLOUT:

 Buffer space available for writing

 POLLERR:

 Descriptor has error to report

 POLLHUP:

 Descriptor hung up (connection closed)

 POLLVAL:

 Descriptor invalid

CS 241 Copyright ©: University of Illinois CS 241 Staff 18

Poll

 High-resolution sleep function

 0 nfds

 Positive timeout

 Wait until descriptor(s) become ready

 nfds > 0

 timeout INFTIM or -1

 Wait until descriptor(s) become ready or timeout occurs

 nfds > 0

 Positive timeout

 Check descriptors immediately (poll)

 nfds > 0

 0 timeout

CS 241 Copyright ©: University of Illinois CS 241 Staff 19

Poll: Example

struct pollfd my_pfds[1];

my_pfds[0].fd = 0;

my_pfds[0].events = POLLIN;

if (poll(&my_pfds, 1, INFTIM) == 1) {

ASSERT (my_pfds[0].revents & POLLIN);

/* data ready on stdin */

CS 241 Copyright ©: University of Illinois CS 241 Staff 20

Advanced Sockets: signal

signal (SIGPIPE, SIG_IGN);

 Call at start of main in server

 Allows you to ignore broken pipe signals which

are generated when you write to a socket that

has already been closed on the other side

 Default handler exits (terminates process)

Advanced Sockets

 How come I get "address already in use"

from bind()?

 You have stopped your server, and then re-

started it right away

 The sockets that were used by the first

incarnation of the server are still active

CS 241 Copyright ©: University of Illinois CS 241 Staff 21

CS 241 Copyright ©: University of Illinois CS 241 Staff 22

Advanced Sockets:
setsockopt

int yes = 1;

setsockopt (fd, SOL_SOCKET,

SO_REUSEADDR, (char *) &yes, sizeof

(yes));

 Call just before bind

 Allows bind to succeed despite the existence of

existing connections in the requested TCP port

 Connections in limbo (e.g. lost final ACK) will

cause bind to fail

CS 241 Copyright ©: University of Illinois CS 241 Staff 23

HTTP Request Framing

 Characteristics

 ASCII-based (human readable)

 Framed by text lines

 First line is command

 Remaining lines are additional data

 Blank line ends request frame

GET /surf/too/much.html HTTP/1.0

Date: 28 February 2000 011:25:53 CST

Server: www.surfanon.org

<blank line>

CS 241 Copyright ©: University of Illinois CS 241 Staff 24

HTTP Server Push (Netscape-

Specific)

 Idea
 Connection remains open

 Server pushes down new data as needed

 Termination
 Any time by server

 Stop loading (or reload) by client

 Components
 Header indicating multiple parts

 New part replaces old part

 New part sent any time

 Wrappers for each part

CS 241 Copyright ©: University of Illinois CS 241 Staff 25

HTTP Server Push (Netscape-

Specific)

the data component

HTTP/1.0 200 OK

Content-type: multipart/x-mixed-replace;\

boundary=---never_in_document---

---never_in_document---

Content-type: text/html

(actual data)

---never_in_document---

CS 241 Copyright ©: University of Illinois CS 241 Staff 27

Example

 Push server

 Client-server connection remains open

 Server pushes new data

 Use pthreads

 Main thread

 Accepts new client connections

 Spawns child thread for each client

 Child threads

 Parses client requests

 Constructs response

 Checks for file modification

 Pushes file when necessary

CS 241 Copyright ©: University of Illinois CS 241 Staff 28

Example: Server Thread Flow

Chart

Start
Set up server

TCP socket

Initialize

thread

attributes

structure

Spawn a child

thread to

handle new

connection

Wait for a

connection

Create a

thread

specific data

structure

CS 241 Copyright ©: University of Illinois CS 241 Staff 29

Example: Client Thread Flow

Chart

Start
Push thread

cleanup function

Success

in send? y

Send file to client y

n

Store file name and

reset send time y
Request

valid?

y

Done
Pop and execute thread

cleanup function

n

n

Wait for 1 second

or until client send

request

Got client

request?

Need to

send? n

CS 241 Copyright ©: University of Illinois CS 241 Staff 31

set_up_server_socket

static int set_up_server_socket (u_short port) {

int fd; /* server socket file descriptor */

int yes = 1; /* used for setting socket options */

struct sockaddr_in addr; /* server socket address */

/* Create a TCP socket. */

if ((fd = socket (PF_INET, SOCK_STREAM, 0)) == -1) {

perror ("set_up_server_socket/socket");

return -1;

}

/* Allow port reuse with the bind below. */

if (setsockopt (fd, SOL_SOCKET, SO_REUSEADDR,
(char*)&yes, sizeof (yes)) == -1) {

perror ("set_up_server_socket/setsockopt");

return -1;

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 32

set_up_server_socket

/* Set up the address. */

bzero (&addr, sizeof (addr));

addr.sin_family = AF_INET; /* Internet address */

addr.sin_addr.s_addr = INADDR_ANY; /* fill in local IP address */

addr.sin_port = htons (port); /* port specified by caller*/

/* Bind the socket to the port. */

if (bind (fd, (struct sockaddr*)&addr, sizeof (addr)) == -1) {

perror ("set_up_server_socket/bind");

return -1;

}

/* Listen for incoming connections (socket into passive state). */

if (listen (fd, BACKLOG) == -1) {

perror ("set_up_server_socket/listen");

return -1;

}

/* The server socket is now ready. */

return fd;

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 33

wait_for_connections

static void wait_for_connections (int fd){

pthread_attr_t attr; /* initial thread attributes */

thread_info_t* info; /* thread-specific connection information */

int len; /* value-result argument to accept */

pthread_t thread_id; /* child thread identifier */

/* Signal a bug for invalid descriptors. */

ASSERT (fd > 0);

/* Initialize the POSIX threads attribute structure. */

if (pthread_attr_init (&attr) != 0) {

fputs ("failed to initialize pthread attributes\n", stderr);

return;

}

/* The main thread never joins with the children. */

if (pthread_attr_setdetachstate (&attr, PTHREAD_CREATE_DETACHED)
!= 0) {

fputs ("failed to set detached state attribute\n", stderr);

return;

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 34

wait_for_connections

/* Use an infinite loop to wait for connections. For each

connection, create a structure with the thread-specific data, then
spawn a child thread and pass it the data. The child is
responsible for deallocating the memory before it terminates. */

while (1) {

/* Create a thread information structure and initialize

fields that can be filled in before a client contacts

the server. */

if ((info = calloc (1, sizeof (*info))) == NULL) {

perror ("wait_for_connections/calloc");

return;

}

info->fname = NULL;

info->last_sent = (time_t)0;

CS 241 Copyright ©: University of Illinois CS 241 Staff 35

wait_for_connections

/* Wait for a client to contact the server. */

len = sizeof (info->addr);

if ((info->fd = accept (fd, (struct sockaddr*)&info->addr,

&len)) == -1) {

perror ("accept");

return;

}

/* Create a thread to handle the client. */

if (pthread_create (&thread_id, &attr,

(void* (*) (void*))client_thread, info) != 0) {

fputs ("failed to create thread\n", stderr);

/* The child does not exist, the main thread must clean up. */

close (info->fd);

free (info);

return;

}

}

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 36

client_thread

void client_thread (thread_info_t* info) {

/* Check argument. */

ASSERT (info != NULL);

/* Free the thread info block whenever the thread terminates.
Note that pushing this cleanup function races with external
termination. If external termination wins, the memory is never
released. */

pthread_cleanup_push ((void (*)(void*))release_thread_info, info);

/* Loop between waiting for a request and sending a new copy of
the current file of interest. */

while (read_client_request (info) == 0 &&

send_file_to_client (info) == 0);

/* Defer cancellations to avoid re-entering deallocation routine

(release_thread_info) in the middle, then pop (and execute) the

deallocation routine.*/

pthread_setcanceltype (PTHREAD_CANCEL_DEFERRED, NULL);

pthread_cleanup_pop (1);

}

CS 241 Copyright ©: University of Illinois CS 241 Staff 37

client_has_data

static int client_has_data (int fd) {

fd_set read_set;

struct timeval timeout;

/* Check argument. */

ASSERT (fd > 0);

/* Set timeout for select. */

timeout.tv_sec = CHECK_PERIOD;

timeout.tv_usec = 0;

/* Set read mask for select. */

FD_ZERO (&read_set);

FD_SET (fd, &read_set);

/* Call select. Possible return values are {-1, 0, 1}. */

if (select (fd + 1, &read_set, NULL, NULL, &timeout) < 1) {

/* We can't check errno in a thread--assume nothing bad has happened. */

return 0;

}

/* Select returned 1 file descriptor ready for reading. */

return 1;

}

