
CS 241 Copyright ©: University of Illinois CS 241 Staff 1

Application Layer

Using TCP and UDP

 TCP: Byte Stream

 Application passes data to

TCP

 TCP collects data to send

larger packets

 TCP has no knowledge

of/pays no attention to

application data

boundaries

 TCP receiver gets packet

 Receiving application

reads data

 Data is guaranteed to be

in order and complete

 UDP: Packet Stream

 Application passes packet

to UDP

 UDP sends packet

 UDP receiver gets packet

 Receiving application

reads packet

 Packets have no ordering

or delivery guarantees

CS 241 Copyright ©: University of Illinois CS 241 Staff 2

TCP

Send buffer

TCP Byte Stream

CS 241 Copyright ©: University of Illinois CS 241 Staff 3

Application Application

TCP

TCP Segment 1 TCP Segment 2

Write

bytes

Read

bytes

Recv buffer
TCP Segment 1 TCP Segment 2 TCP Segment 1 TCP Segment 2

X TCP Segment 2

UDP Packet Stream

CS 241 Copyright ©: University of Illinois CS 241 Staff 4

UDP

Send buffer

Application Application

UDO

UDP Packet 1 UDP Packet 2

1

2

3

Write

packet

1

2

3

Read

packet

Recv buffer1 2 3 321

UDP Packet 3X
X

X3
2

Networked Applications

 All networked applications use

“application level” protocols to

communicate

 Examples

 HTTP

 FTP

 SMTP

 …

CS 241 Copyright ©: University of Illinois CS 241 Staff 5

Web and HTTP

 Web pages consist of

 Objects

 HTML files, JPEG images, Java applets, audio files,…

 Base HTML-file

 Includes several referenced objects

 Each object is addressable by a URL

 Example URL:

CS 241 Copyright ©: University of Illinois CS 241 Staff 6

www.someschool.edu/someDept/pic.gif

host name path name

HTTP (Hypertext Transfer

Protocol)

 Web’s application

layer protocol

 Client/server model

 Client

 Browser that

requests, receives,

“displays” Web

objects

 Server

 Web server sends

objects in response to

requests

Copyright ©: University of Illinois CS 241 Staff 7

PC running

Explorer

Server

running

Apache Web

server

MAC running

Chrome

CS 241

HTTP

 Uses TCP

 Client initiates TCP connection (creates socket) to server,

port 80

 Server accepts TCP connection from client

 HTTP messages (application-layer protocol messages)

exchanged between browser (HTTP client) and Web

server (HTTP server)

 TCP connection closed

 Stateless

 Server maintains no information about past client requests

Copyright ©: University of Illinois CS 241 Staff 8CS 241

HTTP Connections

 Nonpersistent

HTTP

 At most one object

is sent over a TCP

connection

 Persistent HTTP

 Multiple objects can

be sent over single

TCP connection

between client and

server

Copyright ©: University of Illinois CS 241 Staff 9CS 241

Nonpersistent HTTP

 User enters URL

 Text plus references to 10 jpeg images
www.someschool.edu/someDepartment/home.index

10

time

1a. HTTP client initiates TCP

connection to HTTP server at
www.someschool.edu

on port 80

1b. HTTP server at host
www.someschool.edu waiting

for TCP connection at port 80.

“accepts” connection, notifying

client
2. HTTP client sends HTTP

request message (containing

URL) into TCP socket. Message

indicates that client wants object
someDepartment/home.index

3. HTTP server receives request

message, forms response

message containing requested

object, and sends message into

its socket
CS 241 Copyright ©: University of Illinois CS 241 Staff

Nonpersistent HTTP

11

5. HTTP client receives response

message containing html file,

displays html. Parsing html

file, finds 10 referenced jpeg

objects

6. Steps 1-5 repeated for each of

10 jpeg objects

4. HTTP server closes TCP

connection.

3. HTTP server receives request

message, forms response

message containing requested

object, and sends message into

its socket

time

CS 241 Copyright ©: University of Illinois CS 241 Staff

Non-Persistent HTTP:

Response Time

 RTT

 Time for a small packet

to travel from client to

server and back

 Response time

 One RTT to initiate

TCP connection

+ One RTT for HTTP

request and first few

bytes of HTTP

response to return

+ File transmission time

= 2RTT+transmit time
12

time to

transmit

file

initiate TCP

connection

RTT

request

file

RTT

file

received

time time

CS 241 Copyright ©: University of Illinois CS 241 Staff

Persistent HTTP

 Nonpersistent HTTP

 Requires 2 RTTs per

object

 OS overhead for each

TCP connection

 Browsers often open

parallel TCP

connections to fetch

referenced objects

 Persistent HTTP

 Server leaves connection

open after sending

response

 Subsequent HTTP

messages between

same client/server sent

over open connection

 Client sends requests as

soon as it encounters a

referenced object

 As little as one RTT for all

the referenced objects

13CS 241 Copyright ©: University of Illinois CS 241 Staff

HTTP Request Message

 Two types of HTTP messages: request, response

 ASCII (human-readable format)

 HTTP request message:

14

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

User-agent: Mozilla/4.0

Connection: close

Accept-language:fr

(extra carriage return, line feed)

request line

(GET, POST,

HEAD commands)

header

lines

Carriage return,

line feed

indicates end

of message
CS 241 Copyright ©: University of Illinois CS 241 Staff

Method Types

 HTTP/1.0

 GET

 POST

 HEAD

 Asks server to

leave requested

object out of

response

 HTTP/1.1

 GET, POST, HEAD

 PUT

 Uploads file in entity

body to path

specified in URL

field

 DELETE

 Deletes file

specified in the URL

field

15CS 241 Copyright ©: University of Illinois CS 241 Staff

HTTP Request Message:

General Format

16

method sp URL sp version cr lf

header field name : value cr lf

header field name : value cr lf

header field name : value cr lf

…

cr lf

entity body

Request

line

Header

lines

CS 241 Copyright ©: University of Illinois CS 241 Staff

GET /somedir/page.html HTTP/1.1

Host: www.someschool.edu

Uploading Form Input

 Post method

 Web page often includes form of input

 Input is uploaded to server in entity body

 URL method

 Uses GET method

 Input is uploaded in URL field of request

line:
www.somesite.com/animalsearch?monkeys&banana

17CS 241 Copyright ©: University of Illinois CS 241 Staff

HTTP Response Message

18

HTTP/1.1 200 OK

Connection close

Date: Thu, 06 Aug 1998 12:00:15 GMT

Server: Apache/1.3.0 (Unix)

Last-Modified: Mon, 22 Jun 1998 …...

Content-Length: 6821

Content-Type: text/html

data data data data data ...

status line

(protocol

status code

status phrase)

header

lines

data, e.g.,

requested

HTML file

CS 241 Copyright ©: University of Illinois CS 241 Staff

HTTP response status codes

 In first line in server->client response message

 A few sample codes

19

200 OK request succeeded, requested object later in

this message

301 Moved

Permanently

requested object moved, new location

specified later in this message (Location:),

client automatically retrieves new URL

400 Bad Request request message not understood by server

404 Not Found requested document not found on this server

505 HTTP Version

Not Supported

CS 241 Copyright ©: University of Illinois CS 241 Staff

Trying out HTTP (client side)

For Yourself

1. Telnet to your favorite Web

server

telnet cs.illinois.edu 80

2. Type in a GET HTTP request
GET /index.html HTTP/1.0

3. Look at response message

sent by HTTP server!

20

Opens TCP connection to port 80

(default HTTP server port) at
cs.illinois.edu.

Anything typed in sent
to port 80 at cs.illinois.edu

By typing this in (hit carriage

return twice), you send

this minimal (but complete)

GET request to HTTP server

CS 241 Copyright ©: University of Illinois CS 241 Staff

User-server State: Cookies

 Many major Web sites

use cookies

 Four components

1. Cookie header line of

HTTP response message

2. Cookie header line in

HTTP request message

3. Cookie file kept on user’s

host, managed by user’s

browser

4. Back-end database at

Web site

 Example

 Alice always accesses

Internet from PC

 Visits specific e-

commerce site for first

time

 When initial HTTP

requests arrives at site,

site creates:

 unique ID

 entry in backend

database for ID

21CS 241 Copyright ©: University of Illinois CS 241 Staff

Cookies: Keeping “State”

22

client server

usual http response msg

usual http response msg

cookie file

one week later:

usual http request msg
cookie: 1678 cookie-

specific

action

access

ebay 8734
usual http request msg

Amazon server

creates ID
1678 for usercreate

entry

usual http response
Set-cookie: 1678

ebay 8734

amazon 1678

usual http request msg
cookie: 1678 cookie-

specific

action

access
ebay 8734

amazon 1678

backend

database

CS 241 Copyright ©: University of Illinois CS 241 Staff

Cookies

 What cookies can bring

 Authorization

 Shopping carts

 Recommendations

 User session state (Web e-

mail)

 How to keep “state”

 Protocol endpoints: maintain

state at sender/receiver over

multiple transactions

 cookies: http messages

carry state

 Cookies and

privacy:

 Cookies permit

sites to learn a lot

about you

 You may supply

name and e-mail

to sites

23CS 241 Copyright ©: University of Illinois CS 241 Staff

Web Caches (Proxy Server)

 Goal

 Satisfy client request without involving origin

server

 Caching

 User sets browser: Web accesses via cache

 Browser sends all HTTP requests to cache

 Object in cache: cache returns object

 Else cache requests object from origin server, then

returns object to client

24CS 241 Copyright ©: University of Illinois CS 241 Staff

Web Caches (Proxy Server)

25

client

Proxy

server

client
origin

server

origin

server

CS 241 Copyright ©: University of Illinois CS 241 Staff

More about Web Caching

 Cache

 Acts as both client and

server

 Typically installed by

ISP (university,

company, residential

ISP)

 Why Web caching?

 Reduce response time

for client request

 Reduce traffic on an

institution’s access link.

 Internet dense with

caches

 Enables “poor” content

providers to effectively

deliver content

Copyright ©: University of Illinois CS 241 Staff 26CS 241

Caching Example

 Assumptions

 Average object size =

100,000 bits

 Average request rate

from institution’s

browsers to origin

servers = 15/sec

 Delay from institutional

router to any origin

server and back to

router = 2 sec

27

origin

servers

public

Internet

institutional

network
10 Mbps LAN

1.5 Mbps

access link

institutional

cache

CS 241 Copyright ©: University of Illinois CS 241 Staff

Caching Example

 Consequences

 Utilization on LAN = 15%

 Utilization on access link

= 100%

 total delay = Internet

delay + access delay +

LAN delay

 = 2 sec + minutes +

milliseconds

28

origin

servers

public

Internet

institutional

network
10 Mbps LAN

1.5 Mbps

access link

institutional

cache

CS 241 Copyright ©: University of Illinois CS 241 Staff

Caching Example

 Possible solution

 Increase bandwidth of

access link to 10 Mbps

 Consequence

 Utilization on LAN = 15%

 Utilization on access link

= 15%

 Total delay = Internet

delay + access delay +

LAN delay

 = 2 sec + msecs + msecs

 Often a costly upgrade

29

origin

servers

public

Internet

institutional

network
10 Mbps LAN

10 Mbps

access link

institutional

cache

CS 241 Copyright ©: University of Illinois CS 241 Staff

origin

servers

public

Internet

institutional

network
10 Mbps LAN

1.5 Mbps

access link

institutional

cache

Caching Example

 Possible solution: Cache

 Assume hit rate is 0.4

 40% satisfied immediately

 60% satisfied by origin server

 Consequence

 Utilization on access link =

60%, resulting in negligible

delays (say 10 msec)

 Total avg delay = Internet

delay + access delay +

LAN delay

= .6*(2.01) secs +

.4*milliseconds < 1.4 secs

30CS 241 Copyright ©: University of Illinois CS 241 Staff

Practicalities: Conditional GET

 Goal

 Don’t send if cache

has up-to-date version

 Cache

 Specify date of cached

copy in HTTP request

If-modified-

since: <date>

 Server

 Response contains no

object if up-to-date:

 HTTP/1.0 304 Not

Modified

31

cache server

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0

304 Not Modified

object

not

modified

HTTP request msg
If-modified-since:

<date>

HTTP response
HTTP/1.0 200 OK

<data>

object

modified

CS 241 Copyright ©: University of Illinois CS 241 Staff

No Free Lunch: Problems of

Web Caching

 The major issue: maintaining

consistency

 Two ways

 Pull

 Web caches periodically polls the web

server to see if a document is modified

 Push

 Server gives a copy of a web page to a

web cache,

 Sign a lease with an expiration time

 If web page is modified before the

lease, server notifies cache

CS 241 Copyright ©: University of Illinois CS 241 Staff 32

Which solution

would you

implement?

DNS: Domain Name System

 Internet hosts

 IP address (32 bit)

 Used for addressing datagrams

 Host name (e.g., ww.yahoo.com)

 Used by humans

 DNS: provides translation between host

name and IP address

 Distributed database implemented in hierarchy

of many name servers

 Distributed for scalability & reliability

CS 241 Copyright ©: University of Illinois CS 241 Staff 33

DNS

 DNS services

 Hostname to IP address

translation

 Host aliasing

 Canonical, alias names

 Mail server aliasing

 Load distribution

 Replicated Web servers: set

of IP addresses for one

canonical name

CS 241 Copyright ©: University of Illinois CS 241 Staff 34

13 servers

worldwide
b USC-ISI Marina del Rey, CA

l ICANN Los Angeles, CA

e NASA Mt View, CA

f Internet Software C. Palo Alto,

CA (and 36 other locations)

i Autonomica, Stockholm (plus

28 other locations)

k RIPE London (also 16 other locations)

m WIDE Tokyo (also Seoul,
Paris, SF)

a Verisign, Dulles, VA

c Cogent, Herndon, VA (also LA)

d U Maryland College Park, MD

g US DoD Vienna, VA

h ARL Aberdeen, MD
j Verisign, (21 locations)

DNS

 Why not centralize

DNS?

 Single point of failure

 Traffic volume

 Distant centralized

database

 Maintenance

 Doesn’t scale!

 Root name server

 Contacted by local

name server that can

not resolve name

 Contacts authoritative

name server if mapping

not known

 Gets mapping and

returns it to local name

server

CS 241 Copyright ©: University of Illinois CS 241 Staff 35

TLD and Authoritative Servers

 Top-level domain (TLD) servers

 Responsible for com, org, net, edu, etc, and all top-level

country domains uk, fr, ca, jp.

 Network Solutions maintains servers for com TLD

 Educause for edu TLD

 Authoritative DNS servers

 Organization’s DNS servers

 Provide authoritative hostname to IP mappings for

organization’s servers (e.g., Web, mail).

 Can be maintained by organization or service provider

36CS 241 Copyright ©: University of Illinois CS 241 Staff

Distributed, Hierarchical

Database

 Client wants IP for www.amazon.com
 Client queries a root server to find com DNS server

 Client queries com DNS server to get amazon.com DNS server

 Client queries amazon.com DNS server to get IP address for

www.amazon.com

37

Root DNS Servers

com DNS servers org DNS servers edu DNS servers

uiuc.edu

DNS servers

umass.edu

DNS servers

yahoo.com

DNS servers

amazon.com

DNS servers

pbs.org

DNS servers

CS 241 Copyright ©: University of Illinois CS 241 Staff

38

Local Name Server

 One per ISP (residential ISP, company, university)

 Also called “default name server”

 When host makes DNS query, query is sent to its

local DNS server

 Acts as proxy, forwards query into hierarchy

 Reduces lookup latency for commonly searched

hostnames

CS 241 Copyright ©: University of Illinois CS 241 Staff

DNS name

resolution example

 Host at cs.uiuc.edu

wants IP address for

gaia.cs.umass.edu

 Iterated query

 Contacted server

replies with name of

server to contact

 “I don’t know this name,

but ask this server”

39

requesting host
cs.uiuc.edu

gaia.cs.umass.edu

root DNS server

local DNS server
dns.uiuc.edu

1

2
3

4

5

6
authoritative

DNS server

7
8

TLD DNS

server

CS 241 Copyright ©: University of Illinois CS 241 Staff

dns.cs.umass.edu

DNS: Caching

 Once (any) name server learns

mapping, it caches mapping

 Cache entries timeout (disappear) after

some time

 TLD servers typically cached in local

name servers

 Thus root name servers not often visited

40CS 241 Copyright ©: University of Illinois CS 241 Staff

IP Routing

 Quick background on IP datagrams

 Private IP network

 IP network that is not directly connected

to the Internet

 Not registered and not guaranteed to be

globally unique

CS 241 Copyright ©: University of Illinois CS 241 Staff 41

misc

fields

source

IP addr
dest

IP addr data

IP Routing

 Problem

 Depletion of IP addresses

 Solutions

 Long term: IP v6

 Short term CIDR (Classless InterDomain

Routing)

 Short term: NAT

 Hide a number of hosts behind a single IP

address
CS 241 Copyright ©: University of Illinois CS 241 Staff 42

NAT: Network Address

Translation

 Approach

 Assign one router a global IP address

 Assign internal hosts local IP addresses

 Change IP Headers

 IP addresses (and possibly port numbers) of IP datagrams

are replaced at the boundary of a private network

 Enables hosts on private networks to communicate with

hosts on the Internet

 Run on routers that connect private networks to the public

Internet

CS 241 Copyright ©: University of Illinois CS 241 Staff 43

NAT: Network Address

Translation

 Outgoing packet

 Source IP address (private IP) replaced by

global IP address maintained by NAT router

 Incoming packet

 Destination IP address (global IP of NAT

router) replaced by appropriate private IP

address

CS 241 Copyright ©: University of Illinois CS 241 Staff 44

What address do the remote

hosts respond to?

NAT router caches translation

table:

(source IP address, port #) 

(NAT IP address, new port #)

NAT: Network Address

Translation

 Benefits: local network uses just one (or a few) IP

address as far as outside word is concerned

 No need to be allocated range of addresses from ISP

 Just one IP address is used for all devices

 Can change addresses of devices in local network without

notifying outside world

 Can change ISP without changing addresses of devices in

local network

 Devices inside local net not explicitly addressable, visible

by outside world (a security plus)

CS 241 45Copyright ©: University of Illinois CS 241 Staff

NAT: Network Address

Translation

10.0.0.1

10.0.0.2

10.0.0.3

S: 10.0.0.1, 3345

D: 128.119.40.186, 80

1

10.0.0.4

138.76.29.7

1: host 10.0.0.1

sends datagram to

128.119.40, 80

NAT translation table

WAN side addr LAN side addr

138.76.29.7, 5001 10.0.0.1, 3345

…… ……

S: 128.119.40.186, 80

D: 10.0.0.1, 3345
4

S: 138.76.29.7, 5001

D: 128.119.40.186, 802

2: NAT router

changes datagram

source addr from

10.0.0.1, 3345 to

138.76.29.7, 5001,

updates table

S: 128.119.40.186, 80

D: 138.76.29.7, 5001 3

3: Reply arrives

dest. address:

138.76.29.7, 5001

4: NAT router

changes datagram

dest addr from

138.76.29.7, 5001 to 10.0.0.1, 3345
CS 241 46Copyright ©: University of Illinois CS 241 Staff

NAT: Network Address

Translation

 Address Pooling

 Corporate network has many hosts

 Only a small number of public IP addresses

 NAT solution

 Manage corporate network with a private address space

 NAT, at boundary between corporate network and public

Internet, manages a pool of public IP addresses

 When a host from corporate network sends an IP

datagram to a host in public Internet, NAT picks a public

IP address from the address pool, and binds this address

to the private address of the host

CS 241 47Copyright ©: University of Illinois CS 241 Staff

NAT: Network Address

Translation

 Load balancing

 Balance the load on a set of identical servers, which are

accessible from a single IP address

 NAT solution

 Servers are assigned private addresses

 NAT acts as a proxy for requests to the server from the

public network

 NAT changes the destination IP address of arriving

packets to one of the private addresses for a server

 Balances load on the servers by assigning addresses in a

round-robin fashion

CS 241 Copyright ©: University of Illinois CS 241 Staff 48

NAT: Consequences

 16-bit port-number field

 60,000 simultaneous connections with a single LAN-side

address!

 End-to-end connectivity

 NAT destroys universal end-to-end reachability of hosts on

the Internet

 A host in the public Internet often cannot initiate

communication to a host in a private network

 The problem is worse, when two hosts that are in different

private networks need to communicate with each other

CS 241 49Copyright ©: University of Illinois CS 241 Staff

NAT: Consequences

 Performance

 Modifying the IP header by changing the IP address

requires that NAT boxes recalculate the IP header

checksum

 Modifying port number requires that NAT boxes

recalculate TCP checksum

 Fragmentation

 Datagrams fragmented before NAT device must not be

assigned different IP addresses or different port numbers

CS 241 50Copyright ©: University of Illinois CS 241 Staff

NAT: Consequences

 IP address in application data

 Applications often carry IP addresses in the payload of the

application data

 No longer work across a private-public network boundary

 Hack: Some NAT devices inspect the payload of widely

used application layer protocols and, if an IP address is

detected in the application-layer header or the application

payload, translate the address according to the address

translation table

CS 241 51Copyright ©: University of Illinois CS 241 Staff

