
Copyright ©:University of Illinois CS 241 Staff 1

Introduction to Networking and

the Internet

Survey: “What do you like

most?”

 Material

 Learned a lot from MPs

 MPs relevant to real world

 Staff available, helpful

 Course is fun

 Once I pass, I don’t have to take it

again

Copyright ©:University of Illinois CS 241 Staff 2

Survey: “What do you like

least?”

 Exams

 Midterm too long

 MPs

 MP instructions vague

 MPs too long, hard

 Solo MPs, no group work

 Buggy

 Busywork

 Should be worth more

 HW

 Slow grading/feedback

 Lectures

 Not recorded

 Boring

 More theory, less man

pages

 Slides not useful alone

 Examples too simplistic

 Organization

 office hours should be

more spread out

Copyright ©:University of Illinois CS 241 Staff 3

Where are we?

 Function calls, system calls, threads and

processes

Copyright ©:University of Illinois CS 241 Staff 4

What’s next?

 Networked communication and distributed

applications

Copyright ©:University of Illinois CS 241 Staff 5

Introduction

 What is the Internet?

 Network edge

 What is a protocol?

 Protocol layers, service models

Copyright ©:University of Illinois CS 241 Staff 6

What is the Internet?

 Communication

infrastructure

 Enables distributed

applications

 Web, VoIP, email, games,

e-commerce, file sharing

 Communication services

 Provided to applications

 Reliable data delivery from

source to destination

 “best effort” (unreliable)

data delivery

Copyright ©:University of Illinois CS 241 Staff 7

Home network

Institutional network

Mobile network

Global ISP

Regional ISP

Connectivity

 Building Blocks

 Links

 coax cable, optical fiber, …

 Nodes

 workstations, routers, …

Copyright ©:University of Illinois CS 241 Staff 8

PC

server

wireless
laptop

cellular
handheld

wired
links

access
points

Indirect Connectivity

 Switched Networks  Internetworks

Copyright ©:University of Illinois CS 241 Staff 9

Network Service

 Goal

 Transfer data between end systems

 Support For Common Services

 Idea

 Common services simplify the role of

applications

 Hide the complexity of the network

without overly constraining the

application designer

 Semantics and interface depend on

applications

 Request/reply: FTP, HTTP

 Message stream: audio, video

Copyright ©:University of Illinois CS 241 Staff 10

Copyright ©:University of Illinois CS 241 Staff 11

Host

Host Host

HostHost

Channel

Channels

 Channel

 The abstraction for application-level communication

 Idea

 Turn host-to-host connectivity into process-to-process

communication

APP

APP

Inter-process Communication

 Problems typically masked by communication

channel abstractions

 Bit errors (electrical interference)

 Packet errors (congestion)

 Link/node failures

 Message delays

 Out-of-order delivery

 Eavesdropping

 Goal

 Fill the gap between what applications expect and what

the underlying technology provides

Copyright ©:University of Illinois CS 241 Staff 12

Example: Sending a Letter

Copyright ©:University of Illinois CS 241 Staff

Bob

Postman

Logical flow of information

Bob’s

mailbox

Alice

Alice’s

mailbox

13

Services

 Unconfirmed service

 Acknowledged service

Copyright ©:University of Illinois CS 241 Staff 14

US Mail

Request Indicate

IndicateConfirm

US Mail

Request Indicate

Network Architecture

 Networks are
complex!

 Many “pieces”
 Hosts

 Routers

 Links of various
media

 Applications

 Protocols

 Hardware, software

 Question

 Is there any hope

of organizing

structure of

network?

 Or at least our

discussion of

networks?

Copyright ©:University of Illinois CS 241 Staff 15

Copyright ©:University of Illinois CS 241 Staff 16

Abstraction through Layering

 Abstract system into layers:

 Decompose the problem of building a network into manageable

components

 Each layer provides some functionality

 Modular design provides flexibility

 Modify layer independently

 Allows alternative abstractions

Application programs

Hardware

Host-to-host connectivity

Request/reply channelMessage stream channel

Example: Air Travel

 Layers

 Each layer implements a service

 Via its own internal-layer actions

 Relying on services provided by layer below

Copyright ©:University of Illinois CS 241 Staff 17

ticket (purchase)

baggage (check)

gates (load)

runway (takeoff)

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway (landing)

airplane routing

airplane routing

Air Travel: Services

Copyright ©:University of Illinois CS 241 Staff 18

check-in-counter-to-baggage-claim delivery

people transfer: loading

gate to arrival gate

runway-to-runway delivery of plane

airplane routing from source to destination

bag transfer: belt at

check-in counter to

belt at baggage claim

Distributed Layering

Copyright ©:University of Illinois CS 241 Staff 19

baggage (claim)

gates/bags (unload)

runway landing

airplane routing

airplane routing

d
e

p
a

rt
in

g
 a

ir
p

o
rt

a
rr

iv
in

g
 a

ir
p

o
rt

intermediate air

traffic sites

airplane routing airplane routing

baggage (check)

gates/bags (load)

runway takeoff

airplane routing

Why layering?

 Complexity

 Explicit structure allows identification, relationship of

complex system’s pieces

 Modularity

 Eases maintenance, updating of system

 Change of implementation of layer’s service transparent to

rest of system

 e.g., change in gate procedure doesn’t affect rest of system

 Protocol

 Instantiation of a layer!

Copyright ©:University of Illinois CS 241 Staff 20

What is a Protocol?

 Protocols are defined by

 Specific msgs sent

 Specific actions taken
when msgs received, or
other events

 Human protocols

 “what’s the time?”

 “I have a question”

 Introductions

 Protocols define

 Format

 Order of msgs sent and
received among network
entities

 Actions taken on msg
transmission, receipt

 Network protocols

 Machines rather than
humans

 All communication activity
in Internet is governed by
protocols

Copyright ©:University of Illinois CS 241 Staff 21

What is a Protocol?

 A human protocol  A computer network

protocol

Copyright ©:University of Illinois CS 241 Staff 22

Hi

Hi

Got the

time?

2:00

TCP connection

request

TCP connection

response

Get http://www.uiuc.edu

<file>

time

Network Protocols

 Definition

 A protocol is an abstract object that makes up the layers of

a network system

 A protocol provides a communication service that higher-

layer objects use to exchange messages

 Service interface

 To objects on the same computer that want to use its

communication services

 Peer interface

 To its counterpart on a different machine

 Peers communicate using the services of lower-level protocols

Copyright ©:University of Illinois CS 241 Staff 23

Copyright ©:University of Illinois CS 241 Staff 24

Interfaces

Host 1 Host 2

Service interface

Higher-

level

protocol

(TCP)

Higher-

level

protocol

(TCP)

Peer-to-peer

interface

Lower-level

Protocol

(IP)

Lower-level

Protocol

(IP)

Peer-to-peer

interface

Copyright ©:University of Illinois CS 241 Staff 25

Layering Concepts

 Encapsulation
 Higher layer protocols create messages and

send them via the lower layer protocols

 These messages are treated as data by the
lower-level protocol

 Higher-layer protocol adds its own control
information in the form of headers or trailers

 Multiplexing and Demultiplexing
 Use protocol keys in the header to determine

correct upper-layer protocol

Copyright ©:University of Illinois CS 241 Staff 26

Encapsulation

Application

program

Request/

Reply

Host-to-Host

DATA

RRP HDR DATA

Application

program

Request/

Reply

Host-to-Host

DATA

RRP HDR DATA

HHP HDR RRP HDR DATA

Copyright ©:University of Illinois CS 241 Staff 27

OSI Protocol Stack

Application

Presentation

Physical

Transport

Session

Data Link

Network

 Application: Application specific protocols

 Presentation: Format of exchanged data

 Session: Name space for connection mgmt

 Transport: Process-to-process channel

 Network: Host-to-host packet delivery

 Data Link: Framing of data bits

 Physical: Transmission of raw bits

Example: Transport Layer

 Provide logical communication
between application processes
running on different hosts

 Transport protocols run in end
systems

 Send side:
 Break application messages into segments

 Pass to network layer

 Receive side:
 Reassemble segments into messages

 Pass to application layer

 More than one transport protocol
available to applications

 Internet: TCP and UDP

Copyright ©:University of Illinois CS 241 Staff 28

application

transport

network

data link
physical

application

transport

network

data link
physical

Transport vs. Network Layer

 Transport layer

 Logical

communication

between

processes

 Relies on,

enhances,

network layer

services

 Network layer

 Logical

communication

between hosts

Copyright ©:University of Illinois CS 241 Staff 29

Bob

Postman

Logical flow of information

Bob’s

mailbox

Alice

Alice’s

mailbox

Copyright ©:University of Illinois CS 241 Staff 30

OSI Protocol Stack

Application

Presentation

Physical

Transport

Session

Data Link

Network

Physical

Data Link

Network

Application

Presentation

Physical

Transport

Session

Data Link

Network

Host

User-

Level

Host

OS

Kernel

Router

Copyright ©:University of Illinois CS 241 Staff 31

Internet Architecture

 Features

 No strict layering

Application

Network

IP

UDPTCP

Internet Architecture –

Hourglass Design

 Features

 Hourglass shape – IP is the focal point

Copyright ©:University of Illinois CS 241 Staff 32

FTP

TCP

ModemATMFDDIEthernet

IP

UDP

TFTPNVHTTP

Copyright ©:University of Illinois CS 241 Staff 33

Network Applications

Creating a Network

Application

 Write programs that

 Run on (different) end systems

 Communicate over network

 e.g., web server software communicates with browser

software

 No need to write software for network-core

devices

 Network-core devices do not run user

applications

Copyright ©:University of Illinois CS 241 Staff 34

Client-server Architecture

 Server

 Always-on host

 Well-known IP address

 Clients

 Communicate with server

 May be intermittently

connected

 May have dynamic IP

addresses

 Do not communicate

directly with each other

Copyright ©:University of Illinois CS 241 Staff 35

client/server

P2P Architecture

 No always-on server

 Arbitrary end systems

directly communicate

 Peers are intermittently

connected and change

IP addresses

 Highly scalable but

difficult to manage

Copyright ©:University of Illinois CS 241 Staff 36

peer-peer

Hybrid Client-server and P2P

 Skype

 Voice-over-IP P2P application

 Centralized server: finding address of remote party

 Client-client connection: direct (not through server)

 Instant messaging

 Chatting between two users is P2P

 Centralized service: client presence detection/location

 User registers its IP address with central server when it

comes online

 User contacts central server to find IP addresses of

buddies

Copyright ©:University of Illinois CS 241 Staff 37

Communicating Processes

 Process
 Program running within

a host

 Inter-process
communication
 Two processes

communicating within
same host

 Message Passing
 Two processes

communicating
between different hosts

 Client process
 Initiates communication

 Server process
 Waits to be contacted

Copyright ©:University of Illinois CS 241 Staff 38

Addressing Processes

 Receiving messages
 Process must have

identifier

 Host device has unique
32-bit IP address

 Question
 Does the IP address of

host suffice for
identifying the process?

 Answer: No, many
processes can be
running on same host

 Process Identifier
 Include both IP address

and port number
associated with
process on host.

 Example port numbers
 HTTP server: 80

 Mail server: 25

Copyright ©:University of Illinois CS 241 Staff 39

Sockets

 Process sends/receives

messages to/from its

socket

 Analogous to a door

 Sending process shoves

messages out the door

 Transport infrastructure

on other side of door

brings message to

socket at receiving

process

Copyright ©:University of Illinois CS 241 Staff 40

process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

controlled by

app developer

Sockets

 API

 Choice of transport

protocol

 Ability to set a few

parameters

Copyright ©:University of Illinois CS 241 Staff 41

process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

controlled by

app developer

Transport Services

 Data loss
 Some applications

(e.g., audio) can
tolerate some loss

 Other apps (e.g., file
transfer, telnet) require
100% reliability

 Timing
 Some applications

(e.g., IP phones,
interactive games)
require low delay to be
“effective”

 Throughput
 Some applications

(e.g., multimedia) have
a minimum throughput
to be “effective”

 other applications
(“elastic apps”) make
use of whatever
throughput they get

 Security
 Encryption, data

integrity, …

Copyright ©:University of Illinois CS 241 Staff 42

Internet Transport Protocols

TCP
 Connection-oriented

 setup required between
client and server

 Reliable transport

 Flow control

 Won’t overwhelm receiver

 Congestion control

 Won’t overwhelm network

 Does not provide

 Timing, throughput
guarantees, security

UDP
 Unreliable data transfer

 Does not provide

 Connection setup,
reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

 Question

 Why bother? Why is
there a UDP?

Copyright ©:University of Illinois CS 241 Staff 43

