
Copyright ©:University of Illinois CS 241 Staff 1

Introduction to Networking and 

the Internet



Survey: “What do you like 

most?”

 Material

 Learned a lot from MPs

 MPs relevant to real world

 Staff available, helpful

 Course is fun

 Once I pass, I don’t have to take it 

again
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Survey: “What do you like 

least?”

 Exams

 Midterm too long

 MPs

 MP instructions vague

 MPs too long, hard

 Solo MPs, no group work

 Buggy

 Busywork

 Should be worth more

 HW

 Slow grading/feedback

 Lectures

 Not recorded

 Boring

 More theory, less man 

pages

 Slides not useful alone

 Examples too simplistic

 Organization

 office hours should be 

more spread out
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Where are we?

 Function calls, system calls, threads and 

processes
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What’s next?

 Networked communication and distributed 

applications
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Introduction

 What is the Internet?

 Network edge

 What is a protocol?

 Protocol layers, service models
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What is the Internet?

 Communication 

infrastructure 

 Enables distributed 

applications

 Web, VoIP, email, games, 

e-commerce, file sharing

 Communication services 

 Provided to applications

 Reliable data delivery from 

source to destination

 “best effort” (unreliable) 

data delivery
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Home network

Institutional network

Mobile network

Global ISP

Regional ISP



Connectivity

 Building Blocks

 Links

 coax cable, optical fiber, …

 Nodes

 workstations, routers, …
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PC

server

wireless
laptop

cellular 
handheld

wired
links

access 
points



Indirect Connectivity

 Switched Networks  Internetworks

Copyright ©:University of Illinois CS 241 Staff 9



Network Service

 Goal

 Transfer data between end systems

 Support For Common Services

 Idea

 Common services simplify the role of 

applications

 Hide the complexity of the network 

without overly constraining the 

application designer

 Semantics and interface depend on 

applications

 Request/reply: FTP, HTTP

 Message stream: audio, video
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Host

Host Host

HostHost

Channel

Channels

 Channel

 The abstraction for application-level communication

 Idea

 Turn host-to-host connectivity into process-to-process 

communication

APP

APP



Inter-process Communication

 Problems typically masked by communication 

channel abstractions

 Bit errors (electrical interference)

 Packet errors (congestion)

 Link/node failures

 Message delays

 Out-of-order delivery

 Eavesdropping

 Goal

 Fill the gap between what applications expect and what 

the underlying technology provides
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Example: Sending a Letter
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Bob

Postman

Logical  flow of information

Bob’s 

mailbox

Alice

Alice’s

mailbox

13



Services

 Unconfirmed service

 Acknowledged service 
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US Mail

Request Indicate

IndicateConfirm

US Mail

Request Indicate



Network Architecture 

 Networks are 
complex! 

 Many “pieces”
 Hosts

 Routers

 Links of various 
media

 Applications

 Protocols

 Hardware, software

 Question

 Is there any hope 

of organizing 

structure of 

network?

 Or at least our 

discussion of 

networks?
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Abstraction through Layering

 Abstract system into layers:

 Decompose the problem of building a network into manageable 

components

 Each layer provides some functionality

 Modular design provides flexibility

 Modify layer independently

 Allows alternative abstractions

Application programs

Hardware

Host-to-host connectivity

Request/reply channelMessage stream channel



Example: Air Travel

 Layers

 Each layer implements a service

 Via its own internal-layer actions

 Relying on services provided by layer below
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ticket (purchase)

baggage (check)

gates (load)

runway (takeoff)

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway (landing)

airplane routing

airplane routing



Air Travel: Services
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check-in-counter-to-baggage-claim delivery

people transfer: loading

gate to arrival gate

runway-to-runway delivery of plane

airplane routing from source to destination

bag transfer: belt at

check-in counter to 

belt at baggage claim



Distributed Layering
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baggage (claim)

gates/bags (unload)

runway landing

airplane routing

airplane routing
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Why layering?

 Complexity

 Explicit structure allows identification, relationship of 

complex system’s pieces

 Modularity

 Eases maintenance, updating of system

 Change of implementation of layer’s service transparent to 

rest of system

 e.g., change in gate procedure doesn’t affect rest of system

 Protocol

 Instantiation of a layer!
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What is a Protocol?

 Protocols are defined by

 Specific msgs sent

 Specific actions taken 
when msgs received, or 
other events

 Human protocols

 “what’s the time?”

 “I have a question”

 Introductions

 Protocols define 

 Format

 Order of msgs sent and 
received among network 
entities

 Actions taken on msg 
transmission, receipt 

 Network protocols

 Machines rather than 
humans

 All communication activity 
in Internet  is governed by 
protocols
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What is a Protocol?

 A human protocol  A computer network 

protocol
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Hi

Hi

Got the

time?

2:00

TCP connection

request

TCP connection

response

Get http://www.uiuc.edu

<file>

time



Network Protocols

 Definition

 A protocol is an abstract object that makes up the layers of 

a network system

 A protocol provides a communication service that higher-

layer objects use to exchange messages

 Service interface

 To objects on the same computer that want to use its 

communication services

 Peer interface

 To its counterpart on a different machine

 Peers communicate using the services of lower-level protocols
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Interfaces

Host 1 Host 2

Service interface

Higher-

level 

protocol 

(TCP)

Higher-

level 

protocol 

(TCP)

Peer-to-peer 

interface

Lower-level 

Protocol 

(IP)

Lower-level 

Protocol 

(IP)

Peer-to-peer 

interface
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Layering Concepts

 Encapsulation
 Higher layer protocols create messages and 

send them via the lower layer protocols

 These messages are treated as data by the 
lower-level protocol

 Higher-layer protocol adds its own control 
information in the form of headers or trailers

 Multiplexing and Demultiplexing
 Use protocol keys in the header to determine 

correct upper-layer protocol
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Encapsulation

Application

program

Request/

Reply

Host-to-Host

DATA

RRP HDR DATA

Application

program

Request/

Reply

Host-to-Host

DATA

RRP HDR DATA

HHP HDR RRP HDR DATA
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OSI Protocol Stack

Application

Presentation

Physical

Transport

Session

Data Link

Network

 Application: Application specific protocols

 Presentation:   Format of exchanged data

 Session: Name space for connection mgmt

 Transport: Process-to-process channel

 Network: Host-to-host packet delivery

 Data Link: Framing of data bits

 Physical: Transmission of raw bits



Example: Transport Layer

 Provide logical communication 
between application processes 
running on different hosts

 Transport protocols run in end 
systems 

 Send side: 
 Break application messages into segments

 Pass to  network layer

 Receive side: 
 Reassemble segments into messages

 Pass to application layer

 More than one transport protocol 
available to applications

 Internet: TCP and UDP

Copyright ©:University of Illinois CS 241 Staff 28

application

transport

network

data link
physical

application

transport

network

data link
physical



Transport vs. Network Layer

 Transport layer

 Logical 

communication 

between 

processes 

 Relies on, 

enhances, 

network layer 

services

 Network layer 

 Logical 

communication 

between hosts
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Bob

Postman

Logical  flow of information

Bob’s 

mailbox

Alice

Alice’s

mailbox
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OSI Protocol Stack

Application

Presentation

Physical

Transport

Session

Data Link

Network

Physical

Data Link

Network

Application

Presentation

Physical

Transport

Session

Data Link

Network

Host

User-

Level

Host

OS

Kernel

Router
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Internet Architecture

 Features

 No strict layering

Application

Network

IP

UDPTCP



Internet Architecture –

Hourglass Design

 Features

 Hourglass shape – IP is the focal point
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FTP

TCP

ModemATMFDDIEthernet

IP

UDP

TFTPNVHTTP
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Network Applications



Creating a Network 

Application

 Write programs that

 Run on (different) end systems

 Communicate over network

 e.g., web server software communicates with browser 

software

 No need to write software for network-core 

devices

 Network-core devices do not run user 

applications 
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Client-server Architecture

 Server 

 Always-on host

 Well-known IP address

 Clients 

 Communicate with server

 May be intermittently 

connected

 May have dynamic IP 

addresses

 Do not communicate 

directly with each other
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client/server



P2P Architecture

 No always-on server

 Arbitrary end systems 

directly communicate

 Peers are intermittently 

connected and change 

IP addresses

 Highly scalable but 

difficult to manage
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peer-peer



Hybrid Client-server and P2P

 Skype

 Voice-over-IP P2P application

 Centralized server: finding address of remote party

 Client-client connection: direct (not through server) 

 Instant messaging

 Chatting between two users is P2P

 Centralized service: client presence detection/location

 User registers its IP address with central server when it 

comes online

 User contacts central server to find IP addresses of 

buddies
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Communicating Processes

 Process
 Program running within 

a host

 Inter-process 
communication 
 Two processes 

communicating within 
same host

 Message Passing 
 Two processes 

communicating 
between different hosts

 Client process
 Initiates communication

 Server process
 Waits to be contacted
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Addressing Processes

 Receiving messages
 Process  must have 

identifier

 Host device has unique 
32-bit IP address

 Question 
 Does  the IP address of 

host suffice for 
identifying the process?

 Answer: No, many 
processes can be 
running on same host

 Process Identifier 
 Include both IP address 

and port number 
associated with 
process on host.

 Example port numbers
 HTTP server: 80

 Mail server: 25
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Sockets

 Process sends/receives 

messages to/from its 

socket

 Analogous to a door

 Sending process shoves 

messages out the door

 Transport infrastructure 

on other side of door 

brings message to 

socket at receiving 

process
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process

TCP with

buffers,

variables

socket

host or

server

process
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socket

host or
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Internet

controlled by

app developer



Sockets

 API

 Choice of transport 

protocol

 Ability to set a few 

parameters

Copyright ©:University of Illinois CS 241 Staff 41

process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

controlled by

app developer



Transport Services

 Data loss
 Some applications 

(e.g., audio) can 
tolerate some loss

 Other apps (e.g., file 
transfer, telnet) require 
100% reliability

 Timing
 Some applications 

(e.g., IP phones, 
interactive games) 
require low delay to be 
“effective”

 Throughput
 Some applications 

(e.g., multimedia) have 
a minimum throughput 
to be “effective”

 other applications 
(“elastic apps”) make 
use of whatever 
throughput they get 

 Security
 Encryption, data 

integrity, …
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Internet Transport Protocols

TCP
 Connection-oriented

 setup required between 
client and server

 Reliable transport

 Flow control

 Won’t overwhelm receiver 

 Congestion control

 Won’t overwhelm network

 Does not provide

 Timing, throughput 
guarantees, security

UDP 
 Unreliable data transfer

 Does not provide

 Connection setup, 
reliability, flow control, 
congestion control, timing, 
throughput guarantee, or 
security 

 Question 

 Why bother?  Why is 
there a UDP?
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