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Introduction to Networking and 

the Internet



Survey: “What do you like 

most?”

 Material

 Learned a lot from MPs

 MPs relevant to real world

 Staff available, helpful

 Course is fun

 Once I pass, I don’t have to take it 

again
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Survey: “What do you like 

least?”

 Exams

 Midterm too long

 MPs

 MP instructions vague

 MPs too long, hard

 Solo MPs, no group work

 Buggy

 Busywork

 Should be worth more

 HW

 Slow grading/feedback

 Lectures

 Not recorded

 Boring

 More theory, less man 

pages

 Slides not useful alone

 Examples too simplistic

 Organization

 office hours should be 

more spread out
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Where are we?

 Function calls, system calls, threads and 

processes
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What’s next?

 Networked communication and distributed 

applications
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Introduction

 What is the Internet?

 Network edge

 What is a protocol?

 Protocol layers, service models
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What is the Internet?

 Communication 

infrastructure 

 Enables distributed 

applications

 Web, VoIP, email, games, 

e-commerce, file sharing

 Communication services 

 Provided to applications

 Reliable data delivery from 

source to destination

 “best effort” (unreliable) 

data delivery
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Home network

Institutional network

Mobile network

Global ISP

Regional ISP



Connectivity

 Building Blocks

 Links

 coax cable, optical fiber, …

 Nodes

 workstations, routers, …
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PC

server

wireless
laptop

cellular 
handheld

wired
links

access 
points



Indirect Connectivity

 Switched Networks  Internetworks
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Network Service

 Goal

 Transfer data between end systems

 Support For Common Services

 Idea

 Common services simplify the role of 

applications

 Hide the complexity of the network 

without overly constraining the 

application designer

 Semantics and interface depend on 

applications

 Request/reply: FTP, HTTP

 Message stream: audio, video
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Host

Host Host

HostHost

Channel

Channels

 Channel

 The abstraction for application-level communication

 Idea

 Turn host-to-host connectivity into process-to-process 

communication

APP

APP



Inter-process Communication

 Problems typically masked by communication 

channel abstractions

 Bit errors (electrical interference)

 Packet errors (congestion)

 Link/node failures

 Message delays

 Out-of-order delivery

 Eavesdropping

 Goal

 Fill the gap between what applications expect and what 

the underlying technology provides
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Example: Sending a Letter
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Bob

Postman

Logical  flow of information

Bob’s 

mailbox

Alice

Alice’s

mailbox

13



Services

 Unconfirmed service

 Acknowledged service 
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US Mail

Request Indicate

IndicateConfirm

US Mail

Request Indicate



Network Architecture 

 Networks are 
complex! 

 Many “pieces”
 Hosts

 Routers

 Links of various 
media

 Applications

 Protocols

 Hardware, software

 Question

 Is there any hope 

of organizing 

structure of 

network?

 Or at least our 

discussion of 

networks?
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Abstraction through Layering

 Abstract system into layers:

 Decompose the problem of building a network into manageable 

components

 Each layer provides some functionality

 Modular design provides flexibility

 Modify layer independently

 Allows alternative abstractions

Application programs

Hardware

Host-to-host connectivity

Request/reply channelMessage stream channel



Example: Air Travel

 Layers

 Each layer implements a service

 Via its own internal-layer actions

 Relying on services provided by layer below
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ticket (purchase)

baggage (check)

gates (load)

runway (takeoff)

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway (landing)

airplane routing

airplane routing



Air Travel: Services
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check-in-counter-to-baggage-claim delivery

people transfer: loading

gate to arrival gate

runway-to-runway delivery of plane

airplane routing from source to destination

bag transfer: belt at

check-in counter to 

belt at baggage claim



Distributed Layering
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Why layering?

 Complexity

 Explicit structure allows identification, relationship of 

complex system’s pieces

 Modularity

 Eases maintenance, updating of system

 Change of implementation of layer’s service transparent to 

rest of system

 e.g., change in gate procedure doesn’t affect rest of system

 Protocol

 Instantiation of a layer!
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What is a Protocol?

 Protocols are defined by

 Specific msgs sent

 Specific actions taken 
when msgs received, or 
other events

 Human protocols

 “what’s the time?”

 “I have a question”

 Introductions

 Protocols define 

 Format

 Order of msgs sent and 
received among network 
entities

 Actions taken on msg 
transmission, receipt 

 Network protocols

 Machines rather than 
humans

 All communication activity 
in Internet  is governed by 
protocols
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What is a Protocol?

 A human protocol  A computer network 

protocol
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Hi

Hi

Got the

time?

2:00

TCP connection

request

TCP connection

response

Get http://www.uiuc.edu

<file>

time



Network Protocols

 Definition

 A protocol is an abstract object that makes up the layers of 

a network system

 A protocol provides a communication service that higher-

layer objects use to exchange messages

 Service interface

 To objects on the same computer that want to use its 

communication services

 Peer interface

 To its counterpart on a different machine

 Peers communicate using the services of lower-level protocols
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Interfaces

Host 1 Host 2

Service interface

Higher-

level 

protocol 

(TCP)

Higher-

level 

protocol 

(TCP)

Peer-to-peer 

interface

Lower-level 

Protocol 

(IP)

Lower-level 

Protocol 

(IP)

Peer-to-peer 

interface
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Layering Concepts

 Encapsulation
 Higher layer protocols create messages and 

send them via the lower layer protocols

 These messages are treated as data by the 
lower-level protocol

 Higher-layer protocol adds its own control 
information in the form of headers or trailers

 Multiplexing and Demultiplexing
 Use protocol keys in the header to determine 

correct upper-layer protocol
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Encapsulation

Application

program

Request/

Reply

Host-to-Host

DATA

RRP HDR DATA

Application

program

Request/

Reply

Host-to-Host

DATA

RRP HDR DATA

HHP HDR RRP HDR DATA
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OSI Protocol Stack

Application

Presentation

Physical

Transport

Session

Data Link

Network

 Application: Application specific protocols

 Presentation:   Format of exchanged data

 Session: Name space for connection mgmt

 Transport: Process-to-process channel

 Network: Host-to-host packet delivery

 Data Link: Framing of data bits

 Physical: Transmission of raw bits



Example: Transport Layer

 Provide logical communication 
between application processes 
running on different hosts

 Transport protocols run in end 
systems 

 Send side: 
 Break application messages into segments

 Pass to  network layer

 Receive side: 
 Reassemble segments into messages

 Pass to application layer

 More than one transport protocol 
available to applications

 Internet: TCP and UDP
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application

transport

network

data link
physical

application

transport

network

data link
physical



Transport vs. Network Layer

 Transport layer

 Logical 

communication 

between 

processes 

 Relies on, 

enhances, 

network layer 

services

 Network layer 

 Logical 

communication 

between hosts
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Bob

Postman

Logical  flow of information

Bob’s 

mailbox

Alice

Alice’s

mailbox
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OSI Protocol Stack

Application

Presentation

Physical

Transport

Session

Data Link

Network

Physical

Data Link

Network

Application

Presentation

Physical

Transport

Session

Data Link

Network

Host

User-

Level

Host

OS

Kernel

Router
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Internet Architecture

 Features

 No strict layering

Application

Network

IP

UDPTCP



Internet Architecture –

Hourglass Design

 Features

 Hourglass shape – IP is the focal point
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FTP

TCP

ModemATMFDDIEthernet

IP

UDP

TFTPNVHTTP
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Network Applications



Creating a Network 

Application

 Write programs that

 Run on (different) end systems

 Communicate over network

 e.g., web server software communicates with browser 

software

 No need to write software for network-core 

devices

 Network-core devices do not run user 

applications 
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Client-server Architecture

 Server 

 Always-on host

 Well-known IP address

 Clients 

 Communicate with server

 May be intermittently 

connected

 May have dynamic IP 

addresses

 Do not communicate 

directly with each other
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client/server



P2P Architecture

 No always-on server

 Arbitrary end systems 

directly communicate

 Peers are intermittently 

connected and change 

IP addresses

 Highly scalable but 

difficult to manage
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peer-peer



Hybrid Client-server and P2P

 Skype

 Voice-over-IP P2P application

 Centralized server: finding address of remote party

 Client-client connection: direct (not through server) 

 Instant messaging

 Chatting between two users is P2P

 Centralized service: client presence detection/location

 User registers its IP address with central server when it 

comes online

 User contacts central server to find IP addresses of 

buddies
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Communicating Processes

 Process
 Program running within 

a host

 Inter-process 
communication 
 Two processes 

communicating within 
same host

 Message Passing 
 Two processes 

communicating 
between different hosts

 Client process
 Initiates communication

 Server process
 Waits to be contacted
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Addressing Processes

 Receiving messages
 Process  must have 

identifier

 Host device has unique 
32-bit IP address

 Question 
 Does  the IP address of 

host suffice for 
identifying the process?

 Answer: No, many 
processes can be 
running on same host

 Process Identifier 
 Include both IP address 

and port number 
associated with 
process on host.

 Example port numbers
 HTTP server: 80

 Mail server: 25
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Sockets

 Process sends/receives 

messages to/from its 

socket

 Analogous to a door

 Sending process shoves 

messages out the door

 Transport infrastructure 

on other side of door 

brings message to 

socket at receiving 

process
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process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

controlled by
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Sockets

 API

 Choice of transport 

protocol

 Ability to set a few 

parameters
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Transport Services

 Data loss
 Some applications 

(e.g., audio) can 
tolerate some loss

 Other apps (e.g., file 
transfer, telnet) require 
100% reliability

 Timing
 Some applications 

(e.g., IP phones, 
interactive games) 
require low delay to be 
“effective”

 Throughput
 Some applications 

(e.g., multimedia) have 
a minimum throughput 
to be “effective”

 other applications 
(“elastic apps”) make 
use of whatever 
throughput they get 

 Security
 Encryption, data 

integrity, …
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Internet Transport Protocols

TCP
 Connection-oriented

 setup required between 
client and server

 Reliable transport

 Flow control

 Won’t overwhelm receiver 

 Congestion control

 Won’t overwhelm network

 Does not provide

 Timing, throughput 
guarantees, security

UDP 
 Unreliable data transfer

 Does not provide

 Connection setup, 
reliability, flow control, 
congestion control, timing, 
throughput guarantee, or 
security 

 Question 

 Why bother?  Why is 
there a UDP?
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