
Copyright ©:University of Illinois CS 241 Staff 1

Introduction to Networking and

the Internet

Survey: “What do you like

most?”

 Material

 Learned a lot from MPs

 MPs relevant to real world

 Staff available, helpful

 Course is fun

 Once I pass, I don’t have to take it

again

Copyright ©:University of Illinois CS 241 Staff 2

Survey: “What do you like

least?”

 Exams

 Midterm too long

 MPs

 MP instructions vague

 MPs too long, hard

 Solo MPs, no group work

 Buggy

 Busywork

 Should be worth more

 HW

 Slow grading/feedback

 Lectures

 Not recorded

 Boring

 More theory, less man

pages

 Slides not useful alone

 Examples too simplistic

 Organization

 office hours should be

more spread out

Copyright ©:University of Illinois CS 241 Staff 3

Where are we?

 Function calls, system calls, threads and

processes

Copyright ©:University of Illinois CS 241 Staff 4

What’s next?

 Networked communication and distributed

applications

Copyright ©:University of Illinois CS 241 Staff 5

Introduction

 What is the Internet?

 Network edge

 What is a protocol?

 Protocol layers, service models

Copyright ©:University of Illinois CS 241 Staff 6

What is the Internet?

 Communication

infrastructure

 Enables distributed

applications

 Web, VoIP, email, games,

e-commerce, file sharing

 Communication services

 Provided to applications

 Reliable data delivery from

source to destination

 “best effort” (unreliable)

data delivery

Copyright ©:University of Illinois CS 241 Staff 7

Home network

Institutional network

Mobile network

Global ISP

Regional ISP

Connectivity

 Building Blocks

 Links

 coax cable, optical fiber, …

 Nodes

 workstations, routers, …

Copyright ©:University of Illinois CS 241 Staff 8

PC

server

wireless
laptop

cellular
handheld

wired
links

access
points

Indirect Connectivity

 Switched Networks Internetworks

Copyright ©:University of Illinois CS 241 Staff 9

Network Service

 Goal

 Transfer data between end systems

 Support For Common Services

 Idea

 Common services simplify the role of

applications

 Hide the complexity of the network

without overly constraining the

application designer

 Semantics and interface depend on

applications

 Request/reply: FTP, HTTP

 Message stream: audio, video

Copyright ©:University of Illinois CS 241 Staff 10

Copyright ©:University of Illinois CS 241 Staff 11

Host

Host Host

HostHost

Channel

Channels

 Channel

 The abstraction for application-level communication

 Idea

 Turn host-to-host connectivity into process-to-process

communication

APP

APP

Inter-process Communication

 Problems typically masked by communication

channel abstractions

 Bit errors (electrical interference)

 Packet errors (congestion)

 Link/node failures

 Message delays

 Out-of-order delivery

 Eavesdropping

 Goal

 Fill the gap between what applications expect and what

the underlying technology provides

Copyright ©:University of Illinois CS 241 Staff 12

Example: Sending a Letter

Copyright ©:University of Illinois CS 241 Staff

Bob

Postman

Logical flow of information

Bob’s

mailbox

Alice

Alice’s

mailbox

13

Services

 Unconfirmed service

 Acknowledged service

Copyright ©:University of Illinois CS 241 Staff 14

US Mail

Request Indicate

IndicateConfirm

US Mail

Request Indicate

Network Architecture

 Networks are
complex!

 Many “pieces”
 Hosts

 Routers

 Links of various
media

 Applications

 Protocols

 Hardware, software

 Question

 Is there any hope

of organizing

structure of

network?

 Or at least our

discussion of

networks?

Copyright ©:University of Illinois CS 241 Staff 15

Copyright ©:University of Illinois CS 241 Staff 16

Abstraction through Layering

 Abstract system into layers:

 Decompose the problem of building a network into manageable

components

 Each layer provides some functionality

 Modular design provides flexibility

 Modify layer independently

 Allows alternative abstractions

Application programs

Hardware

Host-to-host connectivity

Request/reply channelMessage stream channel

Example: Air Travel

 Layers

 Each layer implements a service

 Via its own internal-layer actions

 Relying on services provided by layer below

Copyright ©:University of Illinois CS 241 Staff 17

ticket (purchase)

baggage (check)

gates (load)

runway (takeoff)

airplane routing

ticket (complain)

baggage (claim)

gates (unload)

runway (landing)

airplane routing

airplane routing

Air Travel: Services

Copyright ©:University of Illinois CS 241 Staff 18

check-in-counter-to-baggage-claim delivery

people transfer: loading

gate to arrival gate

runway-to-runway delivery of plane

airplane routing from source to destination

bag transfer: belt at

check-in counter to

belt at baggage claim

Distributed Layering

Copyright ©:University of Illinois CS 241 Staff 19

baggage (claim)

gates/bags (unload)

runway landing

airplane routing

airplane routing

d
e

p
a

rt
in

g
 a

ir
p

o
rt

a
rr

iv
in

g
 a

ir
p

o
rt

intermediate air

traffic sites

airplane routing airplane routing

baggage (check)

gates/bags (load)

runway takeoff

airplane routing

Why layering?

 Complexity

 Explicit structure allows identification, relationship of

complex system’s pieces

 Modularity

 Eases maintenance, updating of system

 Change of implementation of layer’s service transparent to

rest of system

 e.g., change in gate procedure doesn’t affect rest of system

 Protocol

 Instantiation of a layer!

Copyright ©:University of Illinois CS 241 Staff 20

What is a Protocol?

 Protocols are defined by

 Specific msgs sent

 Specific actions taken
when msgs received, or
other events

 Human protocols

 “what’s the time?”

 “I have a question”

 Introductions

 Protocols define

 Format

 Order of msgs sent and
received among network
entities

 Actions taken on msg
transmission, receipt

 Network protocols

 Machines rather than
humans

 All communication activity
in Internet is governed by
protocols

Copyright ©:University of Illinois CS 241 Staff 21

What is a Protocol?

 A human protocol A computer network

protocol

Copyright ©:University of Illinois CS 241 Staff 22

Hi

Hi

Got the

time?

2:00

TCP connection

request

TCP connection

response

Get http://www.uiuc.edu

<file>

time

Network Protocols

 Definition

 A protocol is an abstract object that makes up the layers of

a network system

 A protocol provides a communication service that higher-

layer objects use to exchange messages

 Service interface

 To objects on the same computer that want to use its

communication services

 Peer interface

 To its counterpart on a different machine

 Peers communicate using the services of lower-level protocols

Copyright ©:University of Illinois CS 241 Staff 23

Copyright ©:University of Illinois CS 241 Staff 24

Interfaces

Host 1 Host 2

Service interface

Higher-

level

protocol

(TCP)

Higher-

level

protocol

(TCP)

Peer-to-peer

interface

Lower-level

Protocol

(IP)

Lower-level

Protocol

(IP)

Peer-to-peer

interface

Copyright ©:University of Illinois CS 241 Staff 25

Layering Concepts

 Encapsulation
 Higher layer protocols create messages and

send them via the lower layer protocols

 These messages are treated as data by the
lower-level protocol

 Higher-layer protocol adds its own control
information in the form of headers or trailers

 Multiplexing and Demultiplexing
 Use protocol keys in the header to determine

correct upper-layer protocol

Copyright ©:University of Illinois CS 241 Staff 26

Encapsulation

Application

program

Request/

Reply

Host-to-Host

DATA

RRP HDR DATA

Application

program

Request/

Reply

Host-to-Host

DATA

RRP HDR DATA

HHP HDR RRP HDR DATA

Copyright ©:University of Illinois CS 241 Staff 27

OSI Protocol Stack

Application

Presentation

Physical

Transport

Session

Data Link

Network

 Application: Application specific protocols

 Presentation: Format of exchanged data

 Session: Name space for connection mgmt

 Transport: Process-to-process channel

 Network: Host-to-host packet delivery

 Data Link: Framing of data bits

 Physical: Transmission of raw bits

Example: Transport Layer

 Provide logical communication
between application processes
running on different hosts

 Transport protocols run in end
systems

 Send side:
 Break application messages into segments

 Pass to network layer

 Receive side:
 Reassemble segments into messages

 Pass to application layer

 More than one transport protocol
available to applications

 Internet: TCP and UDP

Copyright ©:University of Illinois CS 241 Staff 28

application

transport

network

data link
physical

application

transport

network

data link
physical

Transport vs. Network Layer

 Transport layer

 Logical

communication

between

processes

 Relies on,

enhances,

network layer

services

 Network layer

 Logical

communication

between hosts

Copyright ©:University of Illinois CS 241 Staff 29

Bob

Postman

Logical flow of information

Bob’s

mailbox

Alice

Alice’s

mailbox

Copyright ©:University of Illinois CS 241 Staff 30

OSI Protocol Stack

Application

Presentation

Physical

Transport

Session

Data Link

Network

Physical

Data Link

Network

Application

Presentation

Physical

Transport

Session

Data Link

Network

Host

User-

Level

Host

OS

Kernel

Router

Copyright ©:University of Illinois CS 241 Staff 31

Internet Architecture

 Features

 No strict layering

Application

Network

IP

UDPTCP

Internet Architecture –

Hourglass Design

 Features

 Hourglass shape – IP is the focal point

Copyright ©:University of Illinois CS 241 Staff 32

FTP

TCP

ModemATMFDDIEthernet

IP

UDP

TFTPNVHTTP

Copyright ©:University of Illinois CS 241 Staff 33

Network Applications

Creating a Network

Application

 Write programs that

 Run on (different) end systems

 Communicate over network

 e.g., web server software communicates with browser

software

 No need to write software for network-core

devices

 Network-core devices do not run user

applications

Copyright ©:University of Illinois CS 241 Staff 34

Client-server Architecture

 Server

 Always-on host

 Well-known IP address

 Clients

 Communicate with server

 May be intermittently

connected

 May have dynamic IP

addresses

 Do not communicate

directly with each other

Copyright ©:University of Illinois CS 241 Staff 35

client/server

P2P Architecture

 No always-on server

 Arbitrary end systems

directly communicate

 Peers are intermittently

connected and change

IP addresses

 Highly scalable but

difficult to manage

Copyright ©:University of Illinois CS 241 Staff 36

peer-peer

Hybrid Client-server and P2P

 Skype

 Voice-over-IP P2P application

 Centralized server: finding address of remote party

 Client-client connection: direct (not through server)

 Instant messaging

 Chatting between two users is P2P

 Centralized service: client presence detection/location

 User registers its IP address with central server when it

comes online

 User contacts central server to find IP addresses of

buddies

Copyright ©:University of Illinois CS 241 Staff 37

Communicating Processes

 Process
 Program running within

a host

 Inter-process
communication
 Two processes

communicating within
same host

 Message Passing
 Two processes

communicating
between different hosts

 Client process
 Initiates communication

 Server process
 Waits to be contacted

Copyright ©:University of Illinois CS 241 Staff 38

Addressing Processes

 Receiving messages
 Process must have

identifier

 Host device has unique
32-bit IP address

 Question
 Does the IP address of

host suffice for
identifying the process?

 Answer: No, many
processes can be
running on same host

 Process Identifier
 Include both IP address

and port number
associated with
process on host.

 Example port numbers
 HTTP server: 80

 Mail server: 25

Copyright ©:University of Illinois CS 241 Staff 39

Sockets

 Process sends/receives

messages to/from its

socket

 Analogous to a door

 Sending process shoves

messages out the door

 Transport infrastructure

on other side of door

brings message to

socket at receiving

process

Copyright ©:University of Illinois CS 241 Staff 40

process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

controlled by

app developer

Sockets

 API

 Choice of transport

protocol

 Ability to set a few

parameters

Copyright ©:University of Illinois CS 241 Staff 41

process

TCP with

buffers,

variables

socket

host or

server

process

TCP with

buffers,

variables

socket

host or

server

Internet

controlled by

app developer

Transport Services

 Data loss
 Some applications

(e.g., audio) can
tolerate some loss

 Other apps (e.g., file
transfer, telnet) require
100% reliability

 Timing
 Some applications

(e.g., IP phones,
interactive games)
require low delay to be
“effective”

 Throughput
 Some applications

(e.g., multimedia) have
a minimum throughput
to be “effective”

 other applications
(“elastic apps”) make
use of whatever
throughput they get

 Security
 Encryption, data

integrity, …

Copyright ©:University of Illinois CS 241 Staff 42

Internet Transport Protocols

TCP
 Connection-oriented

 setup required between
client and server

 Reliable transport

 Flow control

 Won’t overwhelm receiver

 Congestion control

 Won’t overwhelm network

 Does not provide

 Timing, throughput
guarantees, security

UDP
 Unreliable data transfer

 Does not provide

 Connection setup,
reliability, flow control,
congestion control, timing,
throughput guarantee, or
security

 Question

 Why bother? Why is
there a UDP?

Copyright ©:University of Illinois CS 241 Staff 43

