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Signals

 Signal: notification to a process of an event

 Asynchronous notification: interrupt 
whatever I was doing, jumping to signal 
handler
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A little puzzle

 Signals can be seen as a kind of 
interprocess communication

 What’s the difference between signals 
and, say, pipes or shared memory?
 Asynchronous notification
 Doesn’t send a “message” as such; just 

signal number
 Puzzle: Then how could I do this? 

[DEMO]
3
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Signaling Overview
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Generating a signal

 Generated by a process
 ...via system call kill(pid, signal) to send 

signal to process pid
 kill is poorly named: sends any signal, not just 

SIGKILL
 Generated by the kernel, when...

 a child process exits or is stops (SIGCHLD)
 floating point exception, e.g. div. by zero (SIGFPE)
 bad memory access (SIGSEGV)
 ...

6
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Generating signals from
the command line

 You can send a signal to a process from the 
command line using kill

 kill -l  lists the signals the system understands
 kill [-signal] pid will send signal to the 

process with ID pid.
 The optional argument may be a name or a number 

(default is SIGTERM).
 To unconditionally kill a process, use:

 kill -9 pid      which is the same as
 kill -SIGKILL pid
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Generating signals in interactive 
terminal applications

 CTRL-C is SIGINT (interactive attention 
signal) 

 CTRL-Z is SIGSTOP (execution stopped – 
cannot be ignored)

 CTRL-Y is SIGCONT (execution continued 
if stopped)

 CTRL-\ is SIGQUIT (interactive termination: 
core dump)
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A program can signal itself

 Similar to raising an exception
 raise(signal) or    
kill(getpid(), signal)

 Or can signal after a delay:
 unsigned alarm(unsigned seconds);
 alarm(20) sends SIGALRM to calling 

process after 20 real time seconds.
 Calls are not stacked
 alarm(0) cancels alarm

9
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A program can signal itself

 Example: infinite loop ... for 10 seconds

10

int main(void) { 
  alarm(10); 
  while(1); 
} 
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Morbid example

 What does this do?

 Child kills parent in its sleep 11

#include <stdlib.h>
#include <signal.h>

int main(int argc, char** argv) {
    while (1) {
        if (fork())
            sleep(30);
        else
            kill(getppid(), SIGKILL);
    }
}
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Kernel representation

 A signal is related to a specific process
 In the process’s PCB, kernel stores

 Set of pending signals: generated but not 
yet delivered

 Set of blocked signals: will stay pending; 
delivered after unblocked (if ever)

 An action for each signal type: what to do 
to deliver the signal

13
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Kernel signaling procedure

 When signal arrives, set pending bit for 
this signal (N.B.: one bit per signal 
type!)

 When signal ready to be delivered, 
pick a pending, non-blocked signal and 
execute the associated action–one of:
 Ignore
 Kill process
 Execute signal handler specified by proc.

14
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Delivering a signal

 Kernel may handle it
 SIGSTOP, SIGKILL
 Target process can’t handle these
 They’re really messages to the kernel 

about a process, rather than to a process

 For most signals, target process 
handles it (if it wants)

16
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If process handles the signal...

Signal GeneratedProcess

Signal delivered

if signal not blocked
by signal mask...

Signal Caught by handler

Return from Signal 
Handler

Signal
Mask

Signal HandlerSignal
Mask

Process Resumed

Signal
Mask
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Signal mask

 Temporarily prevents select types of 
signals from being delivered

 Signal mask implemented as bit array, 
just like kernel’s representation of 
pending and blocked signals

18

SigInt SigQuit SigKill … SigCont SigAbrt

1 0 1 … 1 0
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Signal mask example

 Block all signals:

 See also sigemptyset, 
sigaddset, sigdelset, 
sigismember

19

sigset_t sigs;
sigfillset(&sigs);
sigprocmask(SIG_SETMASK, &sigs, NULL);
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If it’s not masked, we handle it

 Three ways to handle:
 Ignore it (Note: different than blocking!)
 Kill process
 Run specified signal handler function

 One of these is the default (depends 
on which signal type)

 Tell the kernel what we want to do: 
signal() or sigaction()

20
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Example: Catch control-c

21

#include <stdio.h>
#include <signal.h>

void handle(int sig) {
  char handmsg[] = "Ha! Blocked!\n";
  int msglen = sizeof(handmsg);
  write(2, handmsg, msglen);
    
}
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Example: Catch control-c

22

int main(int argc, char** argv) {
  struct sigaction sa;
  sa.sa_handler = handle;
  sa.sa_flags = 0;
  sigemptyset(&sa.sa_mask);
  sigaction(SIGINT, &sa, NULL);
  while (1) {
    printf("Fish.\n");
    sleep(1);
  }
}

Note: Need to check 
for error conditions in 

all these system & 
library calls!
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Potentially unexpected 
behavior

 Only one pending signal of each type 
at a time.  If another arrives, it is lost.

 What’s an interesting thing that could 
happen during a signal handler?
Another signal arrives! Need to either:
 write code that does not assume mutual 

exclusion (man sigaction)
 or block signals during signal handler 

(signal() and sigaction() can do 
this for you) 23
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How to catch without catching

 Can wait for a signal: no longer 
asynchronous event, so no handler!

 First block all signals
 Then call sigsuspend() or sigwait()

 atomically unblocks signals and waits until 
signal occurs

 (looks a lot like condition variables, eh?)

24
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And now back to the puzzle...

 Can we support arbitrary 
communication between processes 
using only signals?

 Idea: even with two signals, we can 
get 1 bit of information from receipt of 
a signal....

25
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Solution (p.1)

26

#include <stdio.h> 
#include <stdlib.h>
#include <signal.h>

int main(int argc, char** argv) {
  char c;
  int i;
  pid_t friend;
  sigset_t signals_to_mask;

  printf("I'm process %d.  Who should I talk to? ",
         getpid());
  scanf("%d", &friend);
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Solution (p.2)

27

  if (!strcmp(argv[1], "read")) {
    sigfillset(&signals_to_mask);
    sigprocmask(SIG_SETMASK, &signals_to_mask,
                NULL);
    while (1) {
      c = 0;
      for (i = 0; i < 8; i++)
        c |= recv_bit() << i;
      putchar(c); fflush(stdout);
    }
  } else {
    while (1)
      send_char(friend, getchar());
  }
}

R
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All the magic 
happens in the 
recv_bit() and 
send_char() 
functions. How do 
we implement 
those?
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Solution (p.3)

28

int recv_bit() {
  int sig;
  sigset_t set;
  sigemptyset(&set);
  sigaddset(&set, SIGUSR1);
  sigaddset(&set, SIGUSR2);
    
  sigwait(&set, &sig);
  return (sig == SIGUSR2) ? 1 : 0;
}

These 4 lines construct the set 
of signals that we want to wait 
for.  It’s unfortunate that it takes 
4 lines of code just to say 
“SIGUSR1 or SIGUSR2”!

Wait for either of those signals
Interpret received signal
as either a 1 or a 0
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Solution (p.4)

29

void send_char(pid_t friend, char c) {
  int i, signal;
  for (i = 0; i < 8; i++) {
    signal = (c & (1 << i)) ? SIGUSR2 : SIGUSR1;
    kill(friend, signal);
  }
}

What’s wrong with this “solution”?

1. Lost signals (kernel only stores 1 of each type)
2. Reordered signals (delivery order is arbitrary)

How can we fix this? (Solution: see course web site)
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Announcements

 Survey: tinyurl.com/cs241survey
 Have a great break!

30


