
Copyright ©: University of Illinois CS 241 Staff 1

Signals

Copyright ©: University of Illinois CS 241 Staff 2

Signals

 Signal: notification to a process of an event

 Asynchronous notification: interrupt
whatever I was doing, jumping to signal
handler

Copyright ©: University of Illinois CS 241 Staff

A little puzzle

 Signals can be seen as a kind of
interprocess communication

 What’s the difference between signals
and, say, pipes or shared memory?
 Asynchronous notification
 Doesn’t send a “message” as such; just

signal number
 Puzzle: Then how could I do this?

[DEMO]
3

Copyright ©: University of Illinois CS 241 Staff

Signaling Overview

4

Process 1 Process 2
KILL, STOP

CHLD, SEGV, ...

Kernel1. Generate
a signal

2. Kernel
representation

3. Deliver
signal

Most signals

Copyright ©: University of Illinois CS 241 Staff

Signaling Overview

5

Process 1 Process 2
KILL, STOP

CHLD, SEGV, ...

Kernel1. Generate
a signal

2. Kernel
representation

3. Deliver
signal

Most signals

Copyright ©: University of Illinois CS 241 Staff

Generating a signal

 Generated by a process
 ...via system call kill(pid, signal) to send

signal to process pid
 kill is poorly named: sends any signal, not just

SIGKILL
 Generated by the kernel, when...

 a child process exits or is stops (SIGCHLD)
 floating point exception, e.g. div. by zero (SIGFPE)
 bad memory access (SIGSEGV)
 ...

6

Copyright ©: University of Illinois CS 241 Staff 7

Generating signals from
the command line

 You can send a signal to a process from the
command line using kill

 kill -l lists the signals the system understands
 kill [-signal] pid will send signal to the

process with ID pid.
 The optional argument may be a name or a number

(default is SIGTERM).
 To unconditionally kill a process, use:

 kill -9 pid which is the same as
 kill -SIGKILL pid

Copyright ©: University of Illinois CS 241 Staff 8

Generating signals in interactive
terminal applications

 CTRL-C is SIGINT (interactive attention
signal)

 CTRL-Z is SIGSTOP (execution stopped –
cannot be ignored)

 CTRL-Y is SIGCONT (execution continued
if stopped)

 CTRL-\ is SIGQUIT (interactive termination:
core dump)

Copyright ©: University of Illinois CS 241 Staff

A program can signal itself

 Similar to raising an exception
 raise(signal) or
kill(getpid(), signal)

 Or can signal after a delay:
 unsigned alarm(unsigned seconds);
 alarm(20) sends SIGALRM to calling

process after 20 real time seconds.
 Calls are not stacked
 alarm(0) cancels alarm

9

Copyright ©: University of Illinois CS 241 Staff

A program can signal itself

 Example: infinite loop ... for 10 seconds

10

int main(void) {
 alarm(10);
 while(1);
}

Copyright ©: University of Illinois CS 241 Staff

Morbid example

 What does this do?

 Child kills parent in its sleep 11

#include <stdlib.h>
#include <signal.h>

int main(int argc, char** argv) {
 while (1) {
 if (fork())
 sleep(30);
 else
 kill(getppid(), SIGKILL);
 }
}

Copyright ©: University of Illinois CS 241 Staff

Signaling Overview

12

Process 1 Process 2
KILL, STOP

CHLD, SEGV, ...

Kernel1. Generate
a signal

2. Kernel
representation

3. Deliver
signal

Most signals

Copyright ©: University of Illinois CS 241 Staff

Kernel representation

 A signal is related to a specific process
 In the process’s PCB, kernel stores

 Set of pending signals: generated but not
yet delivered

 Set of blocked signals: will stay pending;
delivered after unblocked (if ever)

 An action for each signal type: what to do
to deliver the signal

13

Copyright ©: University of Illinois CS 241 Staff

Kernel signaling procedure

 When signal arrives, set pending bit for
this signal (N.B.: one bit per signal
type!)

 When signal ready to be delivered,
pick a pending, non-blocked signal and
execute the associated action–one of:
 Ignore
 Kill process
 Execute signal handler specified by proc.

14

Copyright ©: University of Illinois CS 241 Staff

Signaling Overview

15

Process 1 Process 2
KILL, STOP

CHLD, SEGV, ...

Kernel1. Generate
a signal

2. Kernel
representation

3. Deliver
signal

Most signals

Copyright ©: University of Illinois CS 241 Staff

Delivering a signal

 Kernel may handle it
 SIGSTOP, SIGKILL
 Target process can’t handle these
 They’re really messages to the kernel

about a process, rather than to a process

 For most signals, target process
handles it (if it wants)

16

Copyright ©: University of Illinois CS 241 Staff 17

If process handles the signal...

Signal GeneratedProcess

Signal delivered

if signal not blocked
by signal mask...

Signal Caught by handler

Return from Signal
Handler

Signal
Mask

Signal HandlerSignal
Mask

Process Resumed

Signal
Mask

Copyright ©: University of Illinois CS 241 Staff

Signal mask

 Temporarily prevents select types of
signals from being delivered

 Signal mask implemented as bit array,
just like kernel’s representation of
pending and blocked signals

18

SigInt SigQuit SigKill … SigCont SigAbrt

1 0 1 … 1 0

Copyright ©: University of Illinois CS 241 Staff

Signal mask example

 Block all signals:

 See also sigemptyset,
sigaddset, sigdelset,
sigismember

19

sigset_t sigs;
sigfillset(&sigs);
sigprocmask(SIG_SETMASK, &sigs, NULL);

Copyright ©: University of Illinois CS 241 Staff

If it’s not masked, we handle it

 Three ways to handle:
 Ignore it (Note: different than blocking!)
 Kill process
 Run specified signal handler function

 One of these is the default (depends
on which signal type)

 Tell the kernel what we want to do:
signal() or sigaction()

20

Copyright ©: University of Illinois CS 241 Staff

Example: Catch control-c

21

#include <stdio.h>
#include <signal.h>

void handle(int sig) {
 char handmsg[] = "Ha! Blocked!\n";
 int msglen = sizeof(handmsg);
 write(2, handmsg, msglen);

}

Copyright ©: University of Illinois CS 241 Staff

Example: Catch control-c

22

int main(int argc, char** argv) {
 struct sigaction sa;
 sa.sa_handler = handle;
 sa.sa_flags = 0;
 sigemptyset(&sa.sa_mask);
 sigaction(SIGINT, &sa, NULL);
 while (1) {
 printf("Fish.\n");
 sleep(1);
 }
}

Note: Need to check
for error conditions in

all these system &
library calls!

Copyright ©: University of Illinois CS 241 Staff

Potentially unexpected
behavior

 Only one pending signal of each type
at a time. If another arrives, it is lost.

 What’s an interesting thing that could
happen during a signal handler?
Another signal arrives! Need to either:
 write code that does not assume mutual

exclusion (man sigaction)
 or block signals during signal handler

(signal() and sigaction() can do
this for you) 23

Copyright ©: University of Illinois CS 241 Staff

How to catch without catching

 Can wait for a signal: no longer
asynchronous event, so no handler!

 First block all signals
 Then call sigsuspend() or sigwait()

 atomically unblocks signals and waits until
signal occurs

 (looks a lot like condition variables, eh?)

24

Copyright ©: University of Illinois CS 241 Staff

And now back to the puzzle...

 Can we support arbitrary
communication between processes
using only signals?

 Idea: even with two signals, we can
get 1 bit of information from receipt of
a signal....

25

Copyright ©: University of Illinois CS 241 Staff

Solution (p.1)

26

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

int main(int argc, char** argv) {
 char c;
 int i;
 pid_t friend;
 sigset_t signals_to_mask;

 printf("I'm process %d. Who should I talk to? ",
 getpid());
 scanf("%d", &friend);

Copyright ©: University of Illinois CS 241 Staff

Solution (p.2)

27

 if (!strcmp(argv[1], "read")) {
 sigfillset(&signals_to_mask);
 sigprocmask(SIG_SETMASK, &signals_to_mask,
 NULL);
 while (1) {
 c = 0;
 for (i = 0; i < 8; i++)
 c |= recv_bit() << i;
 putchar(c); fflush(stdout);
 }
 } else {
 while (1)
 send_char(friend, getchar());
 }
}

R
ea

de
r

W
rit

er

All the magic
happens in the
recv_bit() and
send_char()
functions. How do
we implement
those?

Copyright ©: University of Illinois CS 241 Staff

Solution (p.3)

28

int recv_bit() {
 int sig;
 sigset_t set;
 sigemptyset(&set);
 sigaddset(&set, SIGUSR1);
 sigaddset(&set, SIGUSR2);

 sigwait(&set, &sig);
 return (sig == SIGUSR2) ? 1 : 0;
}

These 4 lines construct the set
of signals that we want to wait
for. It’s unfortunate that it takes
4 lines of code just to say
“SIGUSR1 or SIGUSR2”!

Wait for either of those signals
Interpret received signal
as either a 1 or a 0

Copyright ©: University of Illinois CS 241 Staff

Solution (p.4)

29

void send_char(pid_t friend, char c) {
 int i, signal;
 for (i = 0; i < 8; i++) {
 signal = (c & (1 << i)) ? SIGUSR2 : SIGUSR1;
 kill(friend, signal);
 }
}

What’s wrong with this “solution”?

1. Lost signals (kernel only stores 1 of each type)
2. Reordered signals (delivery order is arbitrary)

How can we fix this? (Solution: see course web site)

Copyright ©: University of Illinois CS 241 Staff

Announcements

 Survey: tinyurl.com/cs241survey
 Have a great break!

30

