Signals

Copyright ©: University of lllinois CS 241 Staff



[ Signals
Signal: notification to a process of an event

Asynchronous notification: interrupt
whatever | was doing, jumping to signal
handler

Copyright ©: University of lllinois CS 241 Staff 2



[A little puzzle

Signals can be seen as a kind of
iInterprocess communication

What's the difference between signals
and, say, pipes or shared memory?
Asynchronous notification

Doesn’t send a “message” as such; just
signal number

Puzzle: Then how could | do this?
[IDEMO]

Copyright ©: University of lllinois CS 241 Staff 3




Signhaling Overview

3. Deliver
signal

1. Generate
a signal

2. Kernel
representation

Copyright ©: University of lllinois CS 241 Staff 4



Signhaling Overview

3. Deliver
signal

1. Generate
a signal

2. Kernel
representation

Copyright ©: University of lllinois CS 241 Staff 5



Generating a signal

Generated by a process

...viasystemcall kill (pid, signal) to send
signal to process pid

kill is poorly named: sends any signal, not just
SIGKILL

Generated by the kernel, when...

a child process exits or is stops (SIGCHLD)
floating point exception, e.g. div. by zero (SIGFPE)
bad memory access (SIGSEGV)

Copyright ©: University of lllinois CS 241 Staff 6




Generating signals from
[the command line

You can send a signal to a process from the
command line using kill

kill -1 lists the signals the system understands

kill [-signal] pid will send signal to the
process with ID pid.

The optional argument may be a name or a number
(default is SIGTERM).

To unconditionally kill a process, use:
kill -9 pid which is the same as
kill -SIGKILL pid

Copyright ©: University of lllinois CS 241 Staff 7




Generating signals in interactive
[terminal applications

CTRL-C is SIGINT (interactive attention
signal)

CTRL-Z is SIGSTOP (execution stopped —
cannot be ignored)

CTRL-Y is SIGCONT (execution continued
If stopped)

CTRL-\ is SIGQUIT (interactive termination:
core dump)

Copyright ©: University of lllinois CS 241 Staff 8



[A program can signal itself

Similar to raising an exception
ralse(signal) or
kill(getpid(), signal)
Or can signal after a delay:

unsigned alarm(unsigned seconds);

alarm(20) sends SIGALRM to calling
process after 20 real time seconds.

Calls are not stacked
alarm(0) cancels alarm

pyright ©: University of lllinois CS 241 Staff 9




[A program can signal itself

Example: infinite loop ... for 10 seconds

int main(void) {
alarm(10);
while(1l);

}

Copyright ©: University of lllinois CS 241 Staff 10



Morbid example

What does this do?

#include <stdlib.h>
#include <signal.h>

int main(int argc, char** argv) {
while (1) {
if (fork())
sleep(30);
else
kill (getppid(), SIGKILL);

}
Child kills parent.in.its.sleep y




Signaling Overview

3. Deliver
signal

1. Generate
a signal

2. Kernel
representation

Copyright ©: University of lllinois CS 241 Staff 12



[Kernel representation

A signal is related to a specific process

In the process’s PCB, kernel stores

Set of pending signals: generated but not
yet delivered

Set of blocked signals: will stay pending;
delivered after unblocked (if ever)

An action for each signal type: what to do
to deliver the signal

Copyright ©: University of lllinois CS 241 Staff 13



[Kernel sighaling procedure

When signal arrives, set pending bit for
this signal (N.B.: one bit per signal
type!)
When signal ready to be delivered,
pick a pending, non-blocked signal and
execute the associated action—one of:

Ignore

Kill process

Execute signal handler specified by proc.

Copyright ©: University of lllinois CS 241 Staff 14




Signaling Overview

3. Deliver
signal

1. Generate
a signal

2. Kernel
representation

Copyright ©: University of lllinois CS 241 Staff 15



[Delivering a signal

Kernel may handle it
SIGSTOP, SIGKILL
Target process can’t handle these

They're really messages to the kernel
about a process, rather than to a process

For most signals, target process
handles it (if it wants)

Copyright ©: University of lllinois CS 241 Staff 16



[If process handles the signal... ]

Progcess

- Signal Generated

Signal de“VereCSigyJ Caught by handler
if signal not blocted

by signal mask..| gnal Hanc.
~_
- Return from Signal
Handler

P ro Ce S S Re s u m %g/right ©: University of lllinois CS 241 Staff 17




[Signal mask ]

= Temporarily prevents select types of
signals from being delivered

= Signal mask implemented as bit array,
just like kernel's representation of
pending and blocked signals

1 0 1 1 0

Copyright ©: University of lllinois CS 241 Staff 18



[Signal mask example

Block all signals:

sigset t sigs;
sigfillset (&sigs);
sigprocmask (SIG SETMASK, &sigs, NULL);

See also sigemptyset,
sigaddset, sigdelset,
siglsmember

Copyright ©: University of lllinois CS 241 Staff 19




[If it's not masked, we handle it

Three ways to handle:
gnore it (Note: different than blocking!)

Kill process
Run specified signal handler function

One of these is the default (depends
on which signal type)

Tell the kernel what we want to do:
signal () or sigaction()

Copyright ©: University of lllinois CS 241 Staff 20



[Example: Catch control-c

#include <stdio.h>
#include <signal.h>

void handle(int sig) {
char handmsg[] = "Ha! Blocked!\n";
int msglen = sizeof (handmsg);
write(2, handmsg, msglen);

}

Copyright ©: University of lllinois CS 241 Staff 21



[Example: Catch control-c ]

int main(int argc, char** argv) {

struct sigaction sa;

sa.sa handler = handle;

sa.sa _flags = 0;

sigemptyset (&sa.sa mask);

sigaction(SIGINT, &sa, NULL);

while (1) {
printf("Fish.\n");
sleep(1l);

}

} Copyright ©: University of lllinois CS 241 Staff 22



Potentially unexpected
[behavior

Only one pending signal of each type
at a time. If another arrives, it is lost.

What's an interesting thing that could
happen during a signal handler?
Another signal arrives! Need to either:

write code that does not assume mutual
exclusion (man sigaction)

or block signals during signal handler
(signal() and sigaction() can do
this for yo&gl))ight@ University of lllinois CS 241 Staff 23




[How to catch without catching

Can wait for a signal: no longer
asynchronous event, so no handler!

First block all signals

Then call sigsuspend() or sigwait ()

atomically unblocks signals and waits until
signal occurs

(looks a lot like condition variables, eh?)

Copyright ©: University of lllinois CS 241 Staff 24



[And now back to the puzzle...

Can we support arbitrary
communication between processes
using only signals?

ldea: even with two signals, we can
get 1 bit of information from receipt of
a signal....

Copyright ©: University of lllinois CS 241 Staff 25



Solution (p.1)

#include <stdio.h>
#include <stdlib.h>
#include <signal.h>

int main(int argc, char** argv) {
char c;
int 1i;
pid t friend;
sigset t signals to mask;

printf("I'm process %$d. Who should I talk to? ",

getpid());
scanf ("%d", &friend);

Copyright ©: University of lllinois CS 241 Staff 26




Solution (p.2)

if (!strcmp(argv[l], "read")) {
sigfillset(&signals to mask);
sigprocmask(SIG SETMASK, &signals to mask,
NULL) ;
while (1) {
c = 0;
for (i1 = 0; 1 < 8; 1i++)
c |= reev bit() << i;
putchar(c); fflush(stdout);

9
ke
&

4

}
} else {

while (1)
send_char (friend, getchar());

W"iter

} Copyright ©: University of lllinois CS 241 Staff



Solution (p.3)

int recv bit() {
int sig;
sigset t set;
sigemptyset(&set);
sigaddset (&set, SIGUSRI1)
sigaddset (&set, SIGUSR2)

&sig);
SIGUSR2)

sigwait(&set,
return (sig ==

Copyright ©: University of lllinois CS 241 Staff 28

°
4
°
4

?

These 4 lines construct the set
of signals that we want to wait
for. It's unfortunate that it takes
4 lines of code just to say
“SIGUSR1 or SIGUSR2"!

| Wait for either of those signals

: 0; | Interpretreceived signal

as eitheral1ora0




Solution (p.4)

void send char(pid t friend, char c) {
int i, signal;
for (1 = 0; 1 < 8; 1i++) {
signal = (¢ & (1 << 1)) ? SIGUSR2 : SIGUSRI1;
kill(friend, signal);
}
}

Copyright ©: University of lllinois CS 241 Staff 29




[Announcements

Survey: tinyurl.com/cs241survey
Have a great break!

Copyright ©: University of lllinois CS 241 Staff 30



